Issue 16, 2016

SWCNT photocathodes sensitised with InP/ZnS core–shell nanocrystals

Abstract

Increasing the light harvesting efficiency of photocathodes is an integral part of optimising the future efficiencies of solar technologies. In contrast to the more extensively studied photoanode systems, current state-of-the-art photocathodes are less efficient and are commonly replaced with rare and expensive materials such as platinum group metals. The significance of photocathodes is in the development of tandem electrodes, enhancing the performance of existing devices. Carbon nanotubes are promising candidates for photocathodes, which, in addition to their p-type conductivity and catalytic properties, possess a suite of unique optical and electrical attributes. This work describes the fabrication of single walled carbon nanotube (SWCNT) photocathodes sensitised with indium phosphide/zinc sulfide (InP/ZnS) core–shell nanocrystals (NCs). Under air mass (AM) 1.5 conditions, the sensitisation of SWCNT photocathodes with InP/ZnS NCs increased the photocurrent density by 350% of the unsensitised output. This significant enhancement of current density demonstrates the potential of InP/ZnS NCs as effective sensitisers to improve the performance of carbon-based photocathode thin films.

Graphical abstract: SWCNT photocathodes sensitised with InP/ZnS core–shell nanocrystals

Supplementary files

Article information

Article type
Paper
Submitted
17 Nov 2015
Accepted
25 Jan 2016
First published
25 Jan 2016
This article is Open Access
Creative Commons BY license

J. Mater. Chem. C, 2016,4, 3379-3384

Author version available

SWCNT photocathodes sensitised with InP/ZnS core–shell nanocrystals

T. J. Macdonald, D. D. Tune, M. R. Dewi, J. C. Bear, P. D. McNaughter, A. G. Mayes, W. M. Skinner, I. P. Parkin, J. G. Shapter and T. Nann, J. Mater. Chem. C, 2016, 4, 3379 DOI: 10.1039/C5TC03833B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements