Jump to main content
Jump to site search

Issue 14, 2016
Previous Article Next Article

Solution-processable, star-shaped bipolar tetraphenylethene derivatives for the fabrication of efficient nondoped OLEDs

Author affiliations

Abstract

Organic light-emitting diodes (OLEDs) based on solution-processable small molecules are attracting intense attention, as such technology combines the merits of low-cost solution processability of polymers and finely defined structural uniformity of small molecules. Small-molecule tetraphenylethene (TPE) derivatives are excellent solid-state light emitters featuring aggregation-induced emission (AIE) characteristics, however those that can be used in solution-processable devices are very rare. To address this issue, herein, a series of novel star-shaped bipolar TPE derivatives are synthesized and characterized. Their thermal stabilities, photophysical properties, electronic structures, electrochemical behaviors, and application in solution-processed OLEDs are investigated systematically. These luminogens exhibit AIE characteristics and excellent fluorescence quantum yields up to 95% in the solid state. Nondoped OLEDs are successfully fabricated through a spin-coating method. The solution-processed OLEDs [ITO (130 nm)/PEDOT:PSS (40 nm)/emitter (70 nm)/TPBi (30 nm)/Ba (4 nm)/Al (120 nm)] adopting star-shaped TPE derivatives as light-emitting layers show peak luminance of 11 665 cd m−2 and high electroluminescence (EL) efficiencies up to 8.3 cd A−1, 2.6% and 7.5 lm W−1. These results demonstrate a promising avenue towards efficient nondoped OLEDs based on solution-processable AIE-active small molecules.

Graphical abstract: Solution-processable, star-shaped bipolar tetraphenylethene derivatives for the fabrication of efficient nondoped OLEDs

Back to tab navigation

Article information


Submitted
16 Sep 2015
Accepted
04 Nov 2015
First published
05 Nov 2015

J. Mater. Chem. C, 2016,4, 2775-2783
Article type
Paper

Solution-processable, star-shaped bipolar tetraphenylethene derivatives for the fabrication of efficient nondoped OLEDs

L. Chen, C. Zhang, G. Lin, H. Nie, W. Luo, Z. Zhuang, S. Ding, R. Hu, S. Su, F. Huang, A. Qin, Z. Zhao and B. Z. Tang, J. Mater. Chem. C, 2016, 4, 2775
DOI: 10.1039/C5TC02949J

Social activity

Search articles by author

Spotlight

Advertisements