Issue 35, 2014

Preparation of nascent molecular electronic devices from gold nanoparticles and terminal alkyne functionalised monolayer films

Abstract

A metal–molecule–GNP assembly has been fabricated using an acetylene-terminated phenylene–ethynylene molecular monolayer, namely 4-((4-((4-ethynylphenyl)ethynyl)phenyl)ethynyl)benzoic acid (HOPEA), sandwiched between a gold substrate bottom electrode and gold nanoparticle (GNP) top contact electrode. In the first stage of the fabrication process, a monolayer of directionally oriented (carboxylate-to-gold) HOPEA was formed onto the bottom electrode using the Langmuir–Blodgett (LB) technique. In the second stage, the gold-substrate supported monolayer was incubated in a solution of gold nanoparticles (GNPs), which resulted in covalent attachment of the GNPs on top of the film via an alkynyl carbon–Au σ-bond thereby creating the metallic top electrode. Adsorption of the GNPs to the organic LB film was confirmed by both UV-vis absorption spectroscopy and X-ray photoemission spectroscopy (XPS), whilst the contact angle showed changes in the physical properties of the film surface as a result of top-coating of the LB film with the GNPs. Importantly, surface-enhanced Raman scattering (SERS) confirmed the covalent attachment of the metal particles to the LB film by formation of Au–C σ-bonds via a heterolytic cleavage of the alkyne C–H bond. Electrical properties of these nascent metal–molecule–GNP assemblies were determined from IV curves recorded with a conductive-AFM in the Peak Force Tunneling AFM (PF-TUNA™) mode. The IV curves obtained from these structures rule out the formation of any significant number of short-circuits due to GNP penetration through the monolayer, suggesting that this strategy of self-assembly of GNPs to alkyne-terminated monolayers is an effective ‘soft’ procedure for the fabrication of molecular junctions without damaging the organic layer.

Graphical abstract: Preparation of nascent molecular electronic devices from gold nanoparticles and terminal alkyne functionalised monolayer films

Article information

Article type
Paper
Submitted
23 May 2014
Accepted
03 Jul 2014
First published
03 Jul 2014
This article is Open Access
Creative Commons BY license

J. Mater. Chem. C, 2014,2, 7348-7355

Author version available

Preparation of nascent molecular electronic devices from gold nanoparticles and terminal alkyne functionalised monolayer films

H. M. Osorio, P. Cea, L. M. Ballesteros, I. Gascón, S. Marqués-González, R. J. Nichols, F. Pérez-Murano, P. J. Low and S. Martín, J. Mater. Chem. C, 2014, 2, 7348 DOI: 10.1039/C4TC01080A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements