Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 31, 2020

Engineering nanoparticles to tackle tumor barriers

Author affiliations

Abstract

Engineering nanoparticles (NPs) as delivery systems of anticancer therapeutics has attracted tremendous attention in recent decades, and some nanoscale drug formulations have been approved for clinical use. However, their therapeutic efficacies are still limited by the presence of a series of biological barriers during the delivery process. Among these obstacles, tumor barriers are generally recognized as the bottleneck, because they dominate the NP extravasation from the tumor vasculature and penetration into the tumor parenchyma. Therefore, this review first discussed tumor barriers from two aspects: tumor vascular barriers and tumor stromal barriers. Pathological features of the two sets of barriers as well as their influence on the delivery efficacy were described. Then, we outlined strategies for engineering NPs to overcome these challenges: increasing extravasation through physical property optimization and tumor vascular targeting; and facilitating deep penetration through particle size manipulation, modulation of the tumor extracellular matrix, and some new mechanisms. This review will provide a critical perspective on engineering strategies for more efficient nanomedicine in oncology.

Graphical abstract: Engineering nanoparticles to tackle tumor barriers

Article information


Submitted
13 Apr 2020
Accepted
01 Jun 2020
First published
01 Jun 2020

J. Mater. Chem. B, 2020,8, 6686-6696
Article type
Review Article

Engineering nanoparticles to tackle tumor barriers

J. Li, Q. Huang, J. Zhang and J. Du, J. Mater. Chem. B, 2020, 8, 6686 DOI: 10.1039/D0TB00967A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements