Issue 43, 2017

Self-assembled RGD dehydropeptide hydrogels for drug delivery applications

Abstract

Peptide-based self-assembled hydrogels have triggered remarkable research interest in recent years owing to their biocompatibility and biomimetic properties and responsiveness, which warrant many technological and biomedical applications. Dehydrodipeptides N-capped with naproxen emerged from our research as effective hydrogelators endowed with resistance to proteolysis. Dehydrodipeptide-based hydrogels are promising nanocarriers for drug delivery applications. In this work, we demonstrate that dehydrodipetide Npx-L-Ala-Z-ΔPhe-OH can be deployed as a minimalist hydrogelator module for synthesizing a gelating construct Npx-L-Ala-Z-ΔPhe-G-R-G-D-G-OH bearing a GRGDG adhesion motif. The self-assembly of the peptide construct and the drug delivery properties of the hydrogel were studied in this work. The peptide construct showed no toxicity towards a fibroblast cell line expressing the αvβ3 integrin. Docking studies suggest that the hydrogelator block does not interfere with the recognition of the RGD motif by the integrin receptor. The self-assembly seems to be directed by intermolecular naphthalene π–π stacking interactions, with the peptide backbone assuming a random coil conformation both in solution and in the gel phase. TEM and STEM imaging revealed that the hydrogel is made of entangled bundles of long thin fibres (width circa 23 nm). The hydrogel exhibits viscoelastic properties, thermo-reversibility and recovery after mechanical fluidization. FRET studies showed that curcumin incorporated into the hydrogel interacts non-covalently with the hydrogel fibrils. Delivery of curcumin from the hydrogel into Nile red loaded model membranes (SUVs) was demonstrated by FRET. Naproxen N-capped dehydrodipeptides are efficacious minimalist hydrogelator modules for obtaining hydrogels functionalized with peptide ligands for cell receptors. These hydrogels are potential nanocarriers for drug delivery.

Graphical abstract: Self-assembled RGD dehydropeptide hydrogels for drug delivery applications

Supplementary files

Article information

Article type
Paper
Submitted
13 Jul 2017
Accepted
06 Oct 2017
First published
27 Oct 2017

J. Mater. Chem. B, 2017,5, 8607-8617

Self-assembled RGD dehydropeptide hydrogels for drug delivery applications

H. Vilaça, T. Castro, F. M. G. Costa, M. Melle-Franco, L. Hilliou, I. W. Hamley, E. M. S. Castanheira, J. A. Martins and P. M. T. Ferreira, J. Mater. Chem. B, 2017, 5, 8607 DOI: 10.1039/C7TB01883E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements