Issue 23, 2016

Zwitterionic nanocomposite hydrogels as effective wound dressings

Abstract

In this study, zwitterionic poly(sulfobetaine acrylamide) (pSBAA) nanocomposite hydrogels were synthesized and implemented as effective chronic wound dressings. The hydrogels exhibited reinforced mechanical properties from added hectorite nanoclay as a physical crosslinker in the polymer chains. Due to the strong interaction with water molecules via ionic solvation, the hydration of the zwitterionic nanocomposite hydrogels was superior to the non-ionic 2-hydroxyethyl methacrylate (pHEMA) hydrogels, which interacts with water molecules via hydrogen bonding. The pSBAA nanocomposite hydrogels cytotoxicity was accessed with NIH-3T3 fibroblast by the MTT assay, the results indicated negligible cytotoxicity after incubation for three days. In addition, the zwitterionic hydrogels displayed evident resistance to adsorption of bovine serum albumin (BSA), NIH-3T3 fibroblast, and bacteria of gram positive S. epidermidis and gram negative P. aeruginosa. The need for antifouling properties in a wound dressing is because commercial dressings removal typically damaging newly formed tissues and colonization of microorganisms occurs on the dressings. For clinical applications as wound dressings, we created normal and diabetic wounds on mice and compared newly developed pSBAA nanocomposite hydrogels with commercial available products. We demonstrated that non-adhesive pSBAA nanocomposite hydrogels enabled ready wound surface removal. Moreover, the wound recovery was conducted with normal and diabetic wounds on rat dorsal by visual observation and showed a complete heal after 10 and 12 days, respectively. Moreover, the histological examination of mice skin confirmed that the zwitterionic hydrogels exhibited thorough re-epithelialization and total formation of new connective tissues in the normal and diabetic wounds after 10 and 12 days, respectively, which was faster than commercial dressings. Consequently, we demonstrated that the pSBAA nanocomposite can serve as an effective dressing for wound management.

Graphical abstract: Zwitterionic nanocomposite hydrogels as effective wound dressings

Supplementary files

Article information

Article type
Paper
Submitted
03 Feb 2016
Accepted
16 May 2016
First published
16 May 2016

J. Mater. Chem. B, 2016,4, 4206-4215

Zwitterionic nanocomposite hydrogels as effective wound dressings

K. Huang, Y. Fang, P. Hsieh, C. Li, N. Dai and C. Huang, J. Mater. Chem. B, 2016, 4, 4206 DOI: 10.1039/C6TB00302H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements