Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 46, 2014
Previous Article Next Article

Theranostic nanoscale coordination polymers for magnetic resonance imaging and bisphosphonate delivery

Author affiliations

Abstract

Nanoscale coordination polymers (NCPs) are self-assembled from metal ions and organic bridging ligands. The tunable compositions, sizes, and shapes; high drug loadings; ease of surface modification; and intrinsic biodegradability make NCPs great candidates for nanomedicine applications. Here we report the self-assembly of a Mn-bisphosphonate NCP that carries exceptionally high loadings of zoledronate (63 ± 5 wt%) and Mn2+ ions (13 ± 4 wt%) for potential cancer therapy and magnetic resonance imaging, respectively. The Mn-bisphosphonate NCP was further coated with lipid and pegylated to control the drug release kinetics and functionalized with a targeting group (anisamide) to endow specificity to cancer cells, leading to significantly enhanced cytotoxicity against human breast and pancreatic cancer cells. In vitro MR imaging studies demonstrated the efficacy of the Mn-bisphosphonate NCP as an effective T1 contrast agent and confirmed the targeting capability of anisamide-functionalized NCP. Multifunctional NCPs thus present an excellent platform for designing theranostic nanomaterials for a wide range of biomedical applications.

Graphical abstract: Theranostic nanoscale coordination polymers for magnetic resonance imaging and bisphosphonate delivery

Back to tab navigation

Supplementary files

Article information


Submitted
09 May 2014
Accepted
01 Oct 2014
First published
08 Oct 2014

J. Mater. Chem. B, 2014,2, 8249-8255
Article type
Paper
Author version available

Theranostic nanoscale coordination polymers for magnetic resonance imaging and bisphosphonate delivery

D. Liu, C. He, C. Poon and W. Lin, J. Mater. Chem. B, 2014, 2, 8249
DOI: 10.1039/C4TB00751D

Social activity

Search articles by author

Spotlight

Advertisements