Issue 44, 2020

A two-dimensional conductive Mo-based covalent organic framework as an efficient electrocatalyst for nitrogen fixation

Abstract

Electrocatalytic reduction of nitrogen (N2) is considered as a simple, green, and sustainable method for producing ammonia (NH3). Inspired by the recent experimental synthesis of a two-dimensional intrinsically conductive Ni-based covalent organic framework (Mirica et al., J. Am. Chem. Soc., 2019, 141, 11929–11937), here, on the basis of density functional theory (DFT), we explore the electrocatalytic performance of a series of stable and conductive two-dimensional (2D) TM-based covalent organic frameworks (TM-COFs, TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Ru, Rh, Pd, Ag, W, Ir, Pt, and Au, respectively) toward the N2 reduction reaction (NRR), which are constructed by the robust linkage between 2,3,9,10,16,17,23,24-octaamino-metallophthalocyanine and pyrene-4,5,9,10-tetraone. The computational results show that the 2D conductive Mo-COF exhibits the highest electrocatalytic performance for N2 fixation with a very low overpotential of 0.16 V among the 20 candidates, and can effectively inhibit the competitive hydrogen evolution reaction (HER). The outstanding NRR activity and selectivity of the Mo-COF stem from its inherent superiorities, such as excellent electrical conductivity, significant positive charge and large spin moment on the Mo atom, and appropriate adsorption strength for NRR species. This work will promote more experimental research in this field to discover more highly active COF-based catalysts for advancing sustainable NH3 production.

Graphical abstract: A two-dimensional conductive Mo-based covalent organic framework as an efficient electrocatalyst for nitrogen fixation

Supplementary files

Article information

Article type
Paper
Submitted
03 Sep 2020
Accepted
21 Oct 2020
First published
21 Oct 2020

J. Mater. Chem. A, 2020,8, 23599-23606

A two-dimensional conductive Mo-based covalent organic framework as an efficient electrocatalyst for nitrogen fixation

C. Wang, Y. Zhao, C. Zhu, M. Zhang, Y. Geng, Y. Li and Z. Su, J. Mater. Chem. A, 2020, 8, 23599 DOI: 10.1039/D0TA08676B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements