Issue 27, 2020

Tuning d-band centers by coupling PdO nanoclusters to WO3 nanosheets to promote the oxygen reduction reaction

Abstract

Supporting Pd on a metal oxide is an effective way to modulate its electronic structure to enhance its electrocatalytic activity in the oxygen reduction reaction (ORR). However, strong coupling between Pd and metal oxides typically requires high-temperature synthesis or annealing. Here, we report a mild and effective approach for synthesis of PdO nanoclusters coupled to WO3 nanosheets (PdO@WO3Sx) via direct conversion of metallic 1T-WS2 nanosheets into WO3 by spontaneous deposition of PdO onto the nanosheets in H2O at 50 °C for 1 h. Strong coupling in as-prepared PdO@WO3Sx was confirmed by observing shifts in binding energy compared to those of pure PdO and WO3. 1T-MoS2 nanosheets were partially converted into MoO3 in an analogous reaction to produce the hybrid MoSxO3 but in low yield due to preferential dissolution forming aqueous MoO42−. The hybrid PdO@WO3Sx exhibited higher half-wave potential (0.89 V vs. RHE) and limiting current density (−6.24 mA cm−2) in the ORR than both PdO@MoSxO3 and commercial Pt/C. In addition to its higher electrocatalytic activity, PdO@WO3Sx showed greater durability compared to Pt/C in the electrocatalytic activity during the continuous ORR. Computational simulations based on d-band center theory reveal that the d-band center of Pd in PdO@WO3Sx was upshifted to −2.57 eV, very close to that of Pt. This Pt-like d-band center of PdO@WO3Sx enabled its excellent electrocatalytic activity in the ORR. This work presents a facile approach to the synthesis of PdO hybrid catalysts and provides fundamental insight into their enhanced electrocatalytic activity for the ORR.

Graphical abstract: Tuning d-band centers by coupling PdO nanoclusters to WO3 nanosheets to promote the oxygen reduction reaction

Supplementary files

Article information

Article type
Paper
Submitted
11 Mar 2020
Accepted
22 Jun 2020
First published
22 Jun 2020

J. Mater. Chem. A, 2020,8, 13490-13500

Tuning d-band centers by coupling PdO nanoclusters to WO3 nanosheets to promote the oxygen reduction reaction

J. Lee, D. Yim, J. H. Park, C. H. Lee, J. Ju, S. U. Lee and J. Kim, J. Mater. Chem. A, 2020, 8, 13490 DOI: 10.1039/D0TA02840A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements