Issue 20, 2020

Improving areal capacity of flexible Li–CO2 batteries by constructing a freestanding cathode with monodispersed MnO nanoparticles in N-doped mesoporous carbon nanofibers

Abstract

High-energy-density batteries are in demand to meet society's immense electricity consumption, especially for wearable and portable devices. Li–CO2 batteries have attracted increasing attention for their high theoretical capacity (1876 W h kg−1) and environmental benignity. Recent research efforts have been mainly focused on improving the performance of powder catalysts; however, the overall energy density is still limited due to the inevitable employment of extra gas diffusion layers (GDLs) in cathodes. Against this backdrop, we report a method of fabricating a freestanding cathode containing ultrafine MnO nanoparticles embedded in mesoporous carbon nanofibers (MnO@NMCNFs) using electrospun Mn metal–organic framework nanofibers as precursors. Benefiting from excellent mechanical strength of the nitrogen-doped carbon nanofiber matrix, abundant mesopores and fully exposed Mn(II) active sites, the obtained cathode guarantees high flexibility, high interface accessibility, high catalytic activity and high conductivity. Therefore, the corresponding Li–CO2 batteries achieved ultrahigh areal capacity (19.07 mA h cm−2), impressively low overpotential (0.73 V) and competitive cycling stability (>50 cycles under cut-off capacity of 1 mA h cm−2). A pouch-type flexible cell based on MnO@NMCNFs steadily lit up commercial LED devices at different bending angles. Our findings advance the application of high-energy Li–CO2 batteries in wearable energy storage systems.

Graphical abstract: Improving areal capacity of flexible Li–CO2 batteries by constructing a freestanding cathode with monodispersed MnO nanoparticles in N-doped mesoporous carbon nanofibers

Supplementary files

Article information

Article type
Paper
Submitted
29 Feb 2020
Accepted
07 Apr 2020
First published
07 Apr 2020

J. Mater. Chem. A, 2020,8, 10354-10362

Improving areal capacity of flexible Li–CO2 batteries by constructing a freestanding cathode with monodispersed MnO nanoparticles in N-doped mesoporous carbon nanofibers

S. Li, Y. Liu, X. Gao, J. Wang, J. Zhou, L. Wang and B. Wang, J. Mater. Chem. A, 2020, 8, 10354 DOI: 10.1039/D0TA02387F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements