Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.

Issue 7, 2020
Previous Article Next Article

Photocatalytic hydrogen evolution on a high-entropy oxide

Author affiliations


The introduction of high-entropy oxides (HEOs), i.e. compounds containing oxygen and five or more cations in their crystal structure, has led to interesting functional properties in recent years. In this study, the first high-entropy photocatalyst is synthesized by mechanical alloying via the high-pressure torsion (HPT) method followed by high-temperature oxidation. The synthesized oxide contains 60 mol% of AB2O7 monoclinic perovskite and 40 mol% of A6B2O17 orthorhombic perovskite, where A represents Ti, Zr and Hf and B represents Nb and Ta. This two-phase oxide with an overall composition of TiHfZrNbTaO11 and a d0 electronic configuration shows an appreciable light absorbance in the visible-light region with a bandgap of 2.9 eV and appropriate valence and conduction bands for water splitting. The material successfully produces hydrogen by photocatalytic water splitting, suggesting the potential of HEOs as new low-bandgap photocatalysts.

Graphical abstract: Photocatalytic hydrogen evolution on a high-entropy oxide

Back to tab navigation

Article information

22 Nov 2019
27 Jan 2020
First published
27 Jan 2020

J. Mater. Chem. A, 2020,8, 3814-3821
Article type

Photocatalytic hydrogen evolution on a high-entropy oxide

P. Edalati, Q. Wang, H. Razavi-Khosroshahi, M. Fuji, T. Ishihara and K. Edalati, J. Mater. Chem. A, 2020, 8, 3814
DOI: 10.1039/C9TA12846H

Social activity

Search articles by author