Issue 4, 2020

A novel all solid-state asymmetric supercapacitor with superior electrochemical performance in a wide temperature range using a hydroquinone modified graphene xerogel as the cathode and N-doped Ti3C2Tx as the anode

Abstract

To further improve the energy density of supercapacitors, novel asymmetric supercapacitors using electrode materials with a large potential window should be designed. In this report, a hydroquinone modified graphene xerogel as the cathode and N-doped Ti3C2Tx as the anode are first applied in all-solid-state asymmetric supercapacitors with a wide voltage window. The hydroquinone modified binder-free graphene xerogels are chosen as the cathode materials because of their high potential, high pseudocapacitance, and high conductivity, whereas the N-doped Ti3C2Tx are selected as the anode materials due to their low potential, high specific capacitance, and high conductivity. The as-fabricated asymmetric device shows a potential window of 1.7 V in a H2SO4 gel electrolyte, and excellent adaptability in a wide temperature range from room temperature to −20 °C. It is found that an excellent energy density of 33.9 W h kg−1 for the asymmetric supercapacitor is achieved at −20 °C. Furthermore, the operation of the asymmetric supercapacitor in a wide temperature range greatly increases the practical application potential of supercapacitors.

Graphical abstract: A novel all solid-state asymmetric supercapacitor with superior electrochemical performance in a wide temperature range using a hydroquinone modified graphene xerogel as the cathode and N-doped Ti3C2Tx as the anode

Supplementary files

Article information

Article type
Paper
Submitted
27 Aug 2019
Accepted
09 Oct 2019
First published
11 Oct 2019

J. Mater. Chem. A, 2020,8, 1687-1696

A novel all solid-state asymmetric supercapacitor with superior electrochemical performance in a wide temperature range using a hydroquinone modified graphene xerogel as the cathode and N-doped Ti3C2Tx as the anode

Q. Sun, T. He and Y. Li, J. Mater. Chem. A, 2020, 8, 1687 DOI: 10.1039/C9TA09447D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements