Issue 34, 2019

Strong magnetic field-dual-assisted fabrication of heterogeneous sulfide-based hollow nanochain electrodes for high-rate supercapacitors

Abstract

Many sulfide-based supercapacitors suffer from the problem of large capacity and energy attenuation at high rates. To tackle this problem, a strong magnetic field (SMF) was exerted twice during new material synthesis and electrode fabrication. Here, one-dimensional (1D) hetero-Zn0.76Co0.24S/Co3S4/β-CoS1.097 hollow sphere nanochains (CZ55S6T) were first prepared via a one-step anion-exchange reaction under SMF. The SMF-induced directional growth of paramagnetic Zn0.76Co0.24S in the outer shell contributed to the directional assembly of the simultaneously hollowing-out spheres into 1D nanochains based on the Kirkendall effect accelerated by SMF. Physicochemical investigations revealed that SMF endowed CZ55S6T with a larger surface area and reduced the loss of active components, especially Zn. The unique 1D hollow nanochain nanostructures contributed to a remarkable rate performance. An oriented CZ55S6T nanochains/graphene flake capacitive electrode (CZ55S6T/G) with high loading (∼8 mg cm−2) was further fabricated using SMF to reduce the path tortuosity. The CZ55S6T/G electrode exhibited strikingly enhanced rate capability with 80% capacitance retention (863.8 F g−1) and cycling capacitance (705 F g−1 after 5000 cycles) at a high rate of 20 A g−1. Furthermore, the CZ55S6T/G-based asymmetric supercapacitor delivered remarkable energy density of 51.5 W h kg−1 at a large power density of 6811 W kg−1.

Graphical abstract: Strong magnetic field-dual-assisted fabrication of heterogeneous sulfide-based hollow nanochain electrodes for high-rate supercapacitors

Supplementary files

Article information

Article type
Paper
Submitted
05 Jul 2019
Accepted
28 Jul 2019
First published
30 Jul 2019

J. Mater. Chem. A, 2019,7, 19733-19744

Strong magnetic field-dual-assisted fabrication of heterogeneous sulfide-based hollow nanochain electrodes for high-rate supercapacitors

X. Yu, J. Yu, Y. Fautrelle, A. Gagnoud, Z. Ren, X. Lu and X. Li, J. Mater. Chem. A, 2019, 7, 19733 DOI: 10.1039/C9TA07224A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements