Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 13, 2019
Previous Article Next Article

Engineering new defective phases of UiO family metal–organic frameworks with water

Author affiliations

Abstract

As defects significantly affect the properties of metal–organic frameworks (MOFs)—from changing their mechanical properties to enhancing their catalytic ability—obtaining synthetic control over defects is essential to tuning the effects on the properties of the MOF. Previous work has shown that synthesis temperature and the identity and concentration of modulating acid are critical factors in determining the nature and distribution of defects in the UiO family of MOFs. In this paper we demonstrate that the amount of water in the reaction mixture in the synthesis of UiO family MOFs is an equally important factor, as it controls the phase which forms for both UiO-67(Hf) and UiO-66(Hf) (F4BDC). We use this new understanding of the importance of water to develop a new route to the stable defect-ordered hcp UiO-66(Hf) phase, demonstrating the effectiveness of this method of defect-engineering in the rational design of MOFs. The insights provided by this investigation open up the possibility of harnessing defects to produce new phases and dimensionalities of other MOFs, including nanosheets, for a variety of applications such as MOF-based membranes.

Graphical abstract: Engineering new defective phases of UiO family metal–organic frameworks with water

Back to tab navigation

Supplementary files

Article information


Submitted
06 Nov 2018
Accepted
13 Feb 2019
First published
19 Feb 2019

J. Mater. Chem. A, 2019,7, 7459-7469
Article type
Paper

Engineering new defective phases of UiO family metal–organic frameworks with water

F. C. N. Firth, M. J. Cliffe, D. Vulpe, M. Aragones-Anglada, P. Z. Moghadam, D. Fairen-Jimenez, B. Slater and C. P. Grey, J. Mater. Chem. A, 2019, 7, 7459
DOI: 10.1039/C8TA10682G

Social activity

Search articles by author

Spotlight

Advertisements