Issue 4, 2019

Oligo-ethylene-glycol based thin-film composite nanofiltration membranes for effective separation of mono-/di-valent anions

Abstract

Separation of monovalent and divalent anions is highly required in water treatment technologies for recycling concentrated brine resources, upgrading industrial separation processes and reducing the release of hazardous compounds into the environment. For the selective separation of monovalent and divalent anions, porous organic networks comprising oligo-ethylene-glycol units were finely tailored with porous structures, ion affinity and hydrophilicity. Enhanced cation affinity and tailored porous structures were achieved by using closely related oligo-ethylene-glycol-containing building blocks, including 1,2-bis(2-aminoethoxy)ethane (EDA), 4,7,10-trioxygen-1,13-tridecanediamine (DCA) and polyethylene glycol diamine (N-PEG). Thin-film composite (TFC) nanofiltration (NF) membranes were prepared by interfacial polymerization using oligo-ethylene-glycol-based amines with trimesoyl chloride (TMC) on a polyethersulfone support (PA@DCA, PA@EDA and PA@N-PEG TFC membranes). The sub-nanometer pore size of the PA@DCA film was larger than that of the PA@EDA film of 2 angstroms, and the PA@DCA TFC membrane exhibited a NaCl permeation 3-fold higher than that of the PA@EDA TFC membrane. Furthermore, the cation permeances of the oligo-ethylene-glycol-based membranes increased in the same order of cation affinity based on the valence of ions. These results indicated a translation of the properties of the oligo-ethylene-glycol units to ion-selective performances. Enhanced pure water permeance, faster NaCl permeance and high Na2SO4 rejection (more than 99%) were achieved at a reduced degree of cross-linking and a thinner thickness of the thin film layer. In terms of mono-/di-valent anion selectivity, the PA@DCA TFC membrane showed a performance 4-fold higher than that of the typically used commercial NF membranes, such as DOW NF 270. This strategy paves the way for microporous organic networks for the fabrication of nanofiltration membranes.

Graphical abstract: Oligo-ethylene-glycol based thin-film composite nanofiltration membranes for effective separation of mono-/di-valent anions

Supplementary files

Article information

Article type
Paper
Submitted
23 Sep 2018
Accepted
17 Dec 2018
First published
18 Dec 2018

J. Mater. Chem. A, 2019,7, 1849-1860

Oligo-ethylene-glycol based thin-film composite nanofiltration membranes for effective separation of mono-/di-valent anions

D. Ren, X. Bi, T. Liu and X. Wang, J. Mater. Chem. A, 2019, 7, 1849 DOI: 10.1039/C8TA09242G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements