Issue 3, 2019

A Janus MoSSe monolayer: a superior and strain-sensitive gas sensing material

Abstract

Recent fabrication of a Janus MoSSe monolayer has raised exciting prospects of developing polar two-dimensional (2D) materials that exhibit excellent properties for nanodevice applications. Here, we proposed MoSSe as a superior gas sensing material by investigating the adsorption of CO, CO2, NH3, NO and NO2 on the Janus layer by first-principles calculations. Due to the presence of out-of-plane polarization originating from the asymmetrical structure, it is found that NH3 adopts distinct opposite orientations when it is adsorbed on the Se or S side of the Janus layer. The binding strengths of all the molecules adsorbed on the Se surface are generally much stronger than those on the S surface. More interestingly, upon strain deformation, the adsorption strengths of NH3 and NO2 molecules on the Se side of MoSSe can be remarkably enhanced, but gradually lowered on the S side. We revealed that the strain-dependent adsorption behavior is driven by a significant change of electrostatic potential difference between the Se and S surfaces under tensile strain. Corresponding to the distinct adsorption behaviors on the two sides, different electronic variations are also revealed. With higher gas sensitivity, and surface and strain selectivity, Janus MoSSe is proposed as an ideal material for constructing ultrahigh-sensitivity nanoscale sensors.

Graphical abstract: A Janus MoSSe monolayer: a superior and strain-sensitive gas sensing material

Supplementary files

Article information

Article type
Paper
Submitted
30 Aug 2018
Accepted
03 Dec 2018
First published
03 Dec 2018

J. Mater. Chem. A, 2019,7, 1099-1106

A Janus MoSSe monolayer: a superior and strain-sensitive gas sensing material

C. Jin, X. Tang, X. Tan, S. C. Smith, Y. Dai and L. Kou, J. Mater. Chem. A, 2019, 7, 1099 DOI: 10.1039/C8TA08407F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements