Issue 48, 2018

Enhancing the thermoelectric power factor of Sr0.9Nd0.1TiO3 through control of the nanostructure and microstructure

Abstract

Donor-doped SrTiO3 ceramics are very promising n-type oxide thermoelectrics. We show that significant improvements in the thermoelectric power factor can be achieved by control of the nanostructure and microstructure. Using additions of B2O3 and ZrO2, high density, high quality Sr0.9Nd0.1TiO3 ceramics were synthesised by the mixed oxide route; samples were heat treated in a single step under reducing atmosphere at 1673 K. Synchrotron and electron diffraction studies revealed an I4/mcm tetragonal symmetry for all specimens. Microstructure development depended on the ZrO2 content; low level additions of ZrO2 (up to 0.3 wt%) led to a uniform grain size with transformation-induced sub-grain boundaries. HRTEM studies showed a high density of dislocations within the grains; the dislocations comprised (100) and (110) edge dislocations with Burger vectors of d(100) and d(110) respectively. Zr doping promoted atomic level homogenization and a uniform distribution of Nd and Sr in the lattice, inducing greatly enhanced carrier mobility. Transport property measurements showed a significant increase in the power factor, mainly resulting from the enhanced electrical conductivity while the Seebeck coefficients were unchanged. In optimised samples a power factor of 2.0 × 10−3 W m−1 K−2 was obtained at 500 K. This is an ∼30% improvement compared to the highest values reported for SrTiO3-based ceramics. The highest ZT value for Sr0.9Nd0.1TiO3 was 0.37 at 1015 K. This paper demonstrates the critical importance of controlling the structure at the atomic level and the effectiveness of minor dopants in enhancing the thermoelectric response.

Graphical abstract: Enhancing the thermoelectric power factor of Sr0.9Nd0.1TiO3 through control of the nanostructure and microstructure

Supplementary files

Article information

Article type
Paper
Submitted
13 Aug 2018
Accepted
18 Nov 2018
First published
23 Nov 2018

J. Mater. Chem. A, 2018,6, 24928-24939

Enhancing the thermoelectric power factor of Sr0.9Nd0.1TiO3 through control of the nanostructure and microstructure

D. Ekren, F. Azough, A. Gholinia, S. J. Day, D. Hernandez-Maldonado, D. M. Kepaptsoglou, Q. M. Ramasse and R. Freer, J. Mater. Chem. A, 2018, 6, 24928 DOI: 10.1039/C8TA07861K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements