Issue 39, 2018

Extension of indacenodithiophene backbone conjugation enables efficient asymmetric A–D–A type non-fullerene acceptors

Abstract

A novel strategy involving judiciously fusing one thiophene/thieno[3,2-b]thiophene on only one side of an indacenodithiophene (IDT) unit to extend IDT backbone conjugation was developed, and three A–D–A type non-fullerene small molecules (TPT-2F, TPTT-2F, and TPTTT-2F) were designed and synthesized to investigate the influence of the extent of IDT core conjugation on their photovoltaic properties. Extending the IDT core conjugation could broaden absorption, upshift the lowest unoccupied molecular orbital (LUMO) energy level, enhance electron mobility, and increase intermolecular π–π stacking. When these three non-fullerene acceptors were applied in organic solar cells (OSCs), simultaneous enhancement of the open-circuit voltage (Voc), short-circuit current (Jsc), and fill factor (FF) was obtained, with the degree of enhancement following the order TPT-2F < TPTT-2F < TPTTT-2F. As a result, the TPTTT-2F based OSCs yielded a high PCE of 12.03%. To the best of our knowledge, the PCE of 12.03% is among the highest values for asymmetric non-fullerene acceptor based OSCs so far. These results demonstrate that extending the conjugation of the IDT core is an effective approach to design highly efficient asymmetric non-fullerene acceptors.

Graphical abstract: Extension of indacenodithiophene backbone conjugation enables efficient asymmetric A–D–A type non-fullerene acceptors

Supplementary files

Article information

Article type
Communication
Submitted
29 Jul 2018
Accepted
06 Sep 2018
First published
13 Sep 2018

J. Mater. Chem. A, 2018,6, 18847-18852

Extension of indacenodithiophene backbone conjugation enables efficient asymmetric A–D–A type non-fullerene acceptors

J. Song, C. Li, L. Ye, C. Koh, Y. Cai, D. Wei, H. Y. Woo and Y. Sun, J. Mater. Chem. A, 2018, 6, 18847 DOI: 10.1039/C8TA07334A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements