Jump to main content
Jump to site search

Issue 40, 2018
Previous Article Next Article

Strategic design of triphenylamine- and triphenyltriazine-based two-dimensional covalent organic frameworks for CO2 uptake and energy storage

Author affiliations

Abstract

Hexagonally ordered covalent organic frameworks (COFs) are interesting new crystalline porous materials that have massive potential for application in gas storage. Herein, we report the synthesis of two series of two-dimensional hexagonally ordered COFs—TPA-COFs and TPT-COFs—through one-pot polycondensations of tris(4-aminophenyl)amine (TPA-3NH2) and 2,4,6-tris(4-aminophenyl)triazine (TPT-3NH2), respectively, with triarylaldehydes featuring different degrees of planarity, symmetry, and nitrogen content. All the synthesized COFs exhibited high crystallinity, large BET surface areas (up to 1747 m2 g−1), excellent thermal stability, and pore size distributions from 1.80 to 2.55 nm. The symmetry and planarity of the monomers strongly affected the degrees of crystallinity and the BET surface areas of the resultant COFs. In addition, these COFs displayed excellent CO2 uptake efficiencies of up to 65.65 and 92.38 mg g−1 at 298 and 273 K, respectively. The incorporation of the more planar and higher-nitrogen-content triaryltriazine unit into the backbones of the TPA-COFs and TPT-COFs enhanced the interactions with CO2, leading to higher CO2 uptakes. Moreover, the synthesized COFs exhibited electrochemical properties because of their conjugated structures containing redox-active triphenylamine groups. This study exposes the importance of considering the symmetry and planarity of the monomers when designing highly crystalline COFs; indeed, the structures of COFs can be tailored to vary their functionalities for specific applications.

Graphical abstract: Strategic design of triphenylamine- and triphenyltriazine-based two-dimensional covalent organic frameworks for CO2 uptake and energy storage

Back to tab navigation

Supplementary files

Article information


Submitted
22 May 2018
Accepted
12 Sep 2018
First published
12 Sep 2018

J. Mater. Chem. A, 2018,6, 19532-19541
Article type
Paper

Strategic design of triphenylamine- and triphenyltriazine-based two-dimensional covalent organic frameworks for CO2 uptake and energy storage

A. F. M. EL-Mahdy, C. Kuo, A. Alshehri, C. Young, Y. Yamauchi, J. Kim and S. Kuo, J. Mater. Chem. A, 2018, 6, 19532
DOI: 10.1039/C8TA04781B

Social activity

Search articles by author

Spotlight

Advertisements