Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 31, 2018
Previous Article Next Article

Oxygen vacancy-originated highly active electrocatalysts for the oxygen evolution reaction

Author affiliations

Abstract

The oxygen evolution reaction (OER) is an important reaction in the field of renewable energy and is utilized in electrochemical water splitting for hydrogen fuel production and rechargeable metal–air batteries. Herein, we report a new oxygen evolution reaction mechanism originating from oxygen vacancies, which remarkably enhances the OER activity of oxygen deficient electrocatalysts. The OER activity of Sr2VFeAsO3−δ is drastically enhanced above the lattice oxygen vacancy of δ = 0.5, exhibiting ∼300 mV lower overpotential and 80 times higher specific activity at 1.7 V vs. RHE. Surprisingly, the initially low OER activity of Sr2VFeAsO3−δ (δ < 0.5) is enhanced to the level of state-of-the-art OER catalysts simply by introducing higher concentrations of oxygen vacancies. Density functional theory (DFT) calculations clarify that the oxygen vacancies are initially dominated by one of the crystallographic sites, while two types of crystallographic sites become fully accessible for δ > 0.5. As a result, the distance between OH coupled oxygen-vacant sites becomes sufficiently short to enable direct O–O bond formation as in photosystem II. Thus, we found that the OER activity of oxygen deficient electrocatalysts is controllable by the variety of lattice oxygen vacancies, which suggests that oxygen deficient layered superconductors are promising OER catalysts for energy conversion technologies.

Graphical abstract: Oxygen vacancy-originated highly active electrocatalysts for the oxygen evolution reaction

Back to tab navigation

Supplementary files

Publication details

The article was received on 20 May 2018, accepted on 08 Jul 2018 and first published on 19 Jul 2018


Article type: Paper
DOI: 10.1039/C8TA04697B
Citation: J. Mater. Chem. A, 2018,6, 15102-15109

  •   Request permissions

    Oxygen vacancy-originated highly active electrocatalysts for the oxygen evolution reaction

    S. Hirai, K. Morita, K. Yasuoka, T. Shibuya, Y. Tojo, Y. Kamihara, A. Miura, H. Suzuki, T. Ohno, T. Matsuda and S. Yagi, J. Mater. Chem. A, 2018, 6, 15102
    DOI: 10.1039/C8TA04697B

Search articles by author

Spotlight

Advertisements