Jump to main content
Jump to site search

Issue 26, 2018
Previous Article Next Article

Fast two-step deposition of perovskite via mediator extraction treatment for large-area, high-performance perovskite solar cells

Author affiliations

Abstract

As the efficiency of perovskite solar cells (PSCs) reached more than 22%, the large-area fabrication of PSCs became another issue receiving growing attention. For large-area PSCs, more reproducibility is required to precisely control the crystallization behavior of perovskites. A two-step process has been preferred to apply large-area coatings of perovskite because of its better reproducibility, but the process has suffered from slow and incomplete conversion of PbI2 to perovskite. In this paper, we propose a fast, simple, two-step method—mediator extraction treatment (MET)—for the preparation of a high-quality perovskite film. In MET, a pre-deposited PbI2–DMSO complex film is converted into a peculiar PbI2 film with a porous morphology and unusual crystallographic orientation via the removal of DMSO. PbI2 could be completely converted into MAPbI3 by a fast reaction with MAI molecules. We demonstrate that this MET process in MAPbI3-based PSCs can achieve 18.8% of the maximum power conversion efficiency (PCE) using spin-coating, and 18.3% of the maximum PCE using slot-die coating with a uniform distribution in a 10 ×10 cm2 substrate at a laboratory scale. Moreover, over 18% of PCE could be achieved in only 100 s, and with room-temperature processing.

Graphical abstract: Fast two-step deposition of perovskite via mediator extraction treatment for large-area, high-performance perovskite solar cells

Back to tab navigation

Supplementary files

Article information


Submitted
28 Mar 2018
Accepted
01 Jun 2018
First published
04 Jun 2018

J. Mater. Chem. A, 2018,6, 12447-12454
Article type
Paper

Fast two-step deposition of perovskite via mediator extraction treatment for large-area, high-performance perovskite solar cells

Y. Y. Kim, E. Y. Park, T. Yang, J. H. Noh, T. J. Shin, N. J. Jeon and J. Seo, J. Mater. Chem. A, 2018, 6, 12447
DOI: 10.1039/C8TA02868K

Social activity

Search articles by author

Spotlight

Advertisements