Issue 5, 2018

Synergic coating and doping effects of Ti-modified integrated layered–spinel Li1.2Mn0.75Ni0.25O2+δ as a high capacity and long lifetime cathode material for Li-ion batteries

Abstract

An integrated layered–spinel material with a nominal composition of (1 − x)Li1.2Mn0.6Ni0.2O2·xLiMn1.5Ni0.5O4 (0.15 < x < 0.3) and crystal defects has been found to be a promising cathode material with a high capacity of 280 mA h g−1. However, capacity fading arising from Mn2+ dissolution occurred at low voltages and long cycling times. To improve the cycling stability while preserving the advantages of this cathode material, a synergic coating and doping approach was studied. This method yields a coating with a similar, but more stable, structure to that of the pristine sample. This coating is achieved by the bulk doping of the surface while maintaining the ratio of layered to spinel phases. The coating layer had a thickness of 12 to 18 nm, which increased with increasing Ti doping, and protected the sample at low voltages while maintaining the ion and charge transport channels on the surface. The Ti-doped sample enhanced the capacity retention by up to 97% after 100 cycles at C/10 and 89% after 200 cycles at 1C compared to 75% and 74% of the pristine sample, respectively. The optimized sample delivered a stable capacity of 270, 250, and 145 mA h g−1 at C/20, C/10, and 1C respectively. This study provides an effective approach to improve the cycling performance of integrated spinel-layered cathode materials.

Graphical abstract: Synergic coating and doping effects of Ti-modified integrated layered–spinel Li1.2Mn0.75Ni0.25O2+δ as a high capacity and long lifetime cathode material for Li-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
17 Oct 2017
Accepted
02 Jan 2018
First published
02 Jan 2018

J. Mater. Chem. A, 2018,6, 2200-2211

Synergic coating and doping effects of Ti-modified integrated layered–spinel Li1.2Mn0.75Ni0.25O2+δ as a high capacity and long lifetime cathode material for Li-ion batteries

N. H. Vu, J. C. Im, S. Unithrattil and W. B. Im, J. Mater. Chem. A, 2018, 6, 2200 DOI: 10.1039/C7TA09118D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements