Issue 44, 2017

Cost-effective hole transporting material for stable and efficient perovskite solar cells with fill factors up to 82%

Abstract

A new small molecule-based hole selective material (HSM), 4,4′,4′′-(7,7′,7′′-(5,5,10,10,15,15-hexahexyl-10,15-dihydro-5H-diindeno[1,2-a:1′,2′-c]fluorene-2,7,12-triyl)tris(2,3-dihydrothieno[3,4-b][1,4]dioxine-7,5-diyl))tris(N,N-bis(4-methoxyphenyl)aniline) (TRUX-E-T), has been developed by a facile synthesis with reduced cost. The highest occupied molecular orbital energy level and lowest unoccupied molecular orbital energy level of TRUX-E-T are −5.10 and −2.50 eV, respectively, making it a suitable HSM for lead iodide perovskite solar cells. TRUX-E-T can be smoothly deposited onto perovskite layers, enabling efficient perovskite solar cells with thin TRUX-E-T layers (∼50 nm), which helps cut the unit cost of the HSL used in PVSCs to approximately one-fortieth (1/40) of 2,2′,7,7′-tetrakis (N,N-di-p-methoxyphenylamino)-9,9′-spirobifluorene (spiro-OMeTAD). Additionally, TRUX-E-T exhibits hole mobilities as high as 2.47 × 10−4 cm2 V−1 s−1, better than spiro-OMeTAD. As a result, our perovskite solar cells using TRUX-E-T have shown high fill factors up to 82%. The champion cell achieved a maximum power conversion efficiency of 18.35% (16.44%) when measured under reverse (forward) voltage scan under AM1.5 G 100 mW cm−2 illumination. Our un-encapsulated cells exhibited good stability in ambient air, maintaining 96.4% of their initial efficiency of 18.35% after 20 days of storage.

Graphical abstract: Cost-effective hole transporting material for stable and efficient perovskite solar cells with fill factors up to 82%

Supplementary files

Article information

Article type
Paper
Submitted
13 Sep 2017
Accepted
09 Oct 2017
First published
10 Oct 2017

J. Mater. Chem. A, 2017,5, 23319-23327

Cost-effective hole transporting material for stable and efficient perovskite solar cells with fill factors up to 82%

L. Guan, X. Yin, D. Zhao, C. Wang, Q. An, J. Yu, N. Shrestha, C. R. Grice, R. A. Awni, Y. Yu, Z. Song, J. Zhou, W. Meng, F. Zhang, R. J. Ellingson, J. Wang, W. Tang and Y. Yan, J. Mater. Chem. A, 2017, 5, 23319 DOI: 10.1039/C7TA08053K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements