Issue 45, 2017

Preparation and physicochemical properties of microcapsules containing phase-change material with graphene/organic hybrid structure shells

Abstract

Microcapsules containing phase-change materials (microPCMs) have received increasing attention in the field of latent thermal storage. The addition of graphene in the shells could be a promising approach to enhance the physicochemical properties of microPCMs because of its superior characteristics particularly the thermal conductivity. The aim of this study was to prepare and investigate the chemical microstructure and physicochemical properties of novel microPCMs with graphene/organic hybrid structure shells. Paraffin was used as a phase-change material, which was microencapsulated by graphene and methanol-modified melamine-formaldehyde (MMF) through an in situ polymerization. The mean size and shell thickness were analyzed. The scanning electron microscopy (SEM) results showed that the microPCMs were spherical particles and graphene enhanced the smoothness of the shell surface. The contents of graphene in the shells were analyzed using X-ray photoelectron spectroscopy (XPS); the microstructure of the shells was investigated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). It was found that the shells had a graphene/organic hybrid structure, which was formed though the electric charge absorption and long-molecular entanglement. At the same time, the mechanical properties of the microcapsules were improved because of the graphene addition. Thermogravimetric analysis (TGA) tests showed that the microPCMs had a higher degradation temperature of 295 °C. In addition, graphene greatly enhanced the thermal stability of the microPCMs. The phase-change properties of the microPCMs were studied by differential scanning calorimetry (DSC) and thermal cycling tests. The results indicated that the phase-change temperature was regulated by the graphene addition and that graphene reduced the thermal barrier of the polymer shell material. The thermal conductivity of microPCMs with 1.0 wt% graphene was increased by about 100% compared to that of microPCMs without graphene. Moreover, the phase-change cycling tests implied that the microPCMs possessed a sensitivity response to heat because of the excellent thermal conductivity of graphene.

Graphical abstract: Preparation and physicochemical properties of microcapsules containing phase-change material with graphene/organic hybrid structure shells

Article information

Article type
Paper
Submitted
08 Aug 2017
Accepted
19 Oct 2017
First published
19 Oct 2017

J. Mater. Chem. A, 2017,5, 23937-23951

Preparation and physicochemical properties of microcapsules containing phase-change material with graphene/organic hybrid structure shells

J. Su, X. Wang, S. Han, X. Zhang, Y. Guo, Y. Wang, Y. Tan, N. Han and W. Li, J. Mater. Chem. A, 2017, 5, 23937 DOI: 10.1039/C7TA06980D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements