Issue 33, 2017

Low band gap conjugated polymers combining siloxane-terminated side chains and alkyl side chains: side-chain engineering achieving a large active layer processing window for PCE > 10% in polymer solar cells

Abstract

Alternating and random conjugated copolymers with a siloxane-terminated side chain for a repeating unit based on 5,6-difluoro[2,1,3]benzothiadiazole (FBT) and quarterthiophene (4T) were synthesized, among which side-chain random copolymers PFBT4T-C5Si-50% and PFBT4T-C5Si-25% with low contents of 50% and 25% siloxane-terminated side chains, respectively, in conjunction with alkyl side chains were found to be more suitable for optoelectronic applications due to good film-forming in solution processing. Grazing incidence X-ray diffraction (GIXD) indicated that the siloxane-terminated side chain could induce PFBT4T-C5Si-50% and PFBT4T-C5Si-25% with face-on orientations, giving high 3-D hole transport in neat films as supported by a high hole mobility up to 2.46 cm2 V−1 s−1 in field-effect transistors and an SCLC hole mobility up to 5.9 × 10−2 cm2 V−1 s−1 in hole-only devices. Fast SCLC hole and electron transports were seen for their bulk-heterojunction (BHJ) blend films with PC71BM as the acceptor, due to the retention of a polymer face-on orientation. The BHJ blend film of PFBT4T-C5Si-25% showed lower film surface roughness, more balanced hole and electron transport, and relatively smaller phase separation when compared with PFBT4T-C5Si-50%, as evidenced by atomic force microscopy (AFM), transmission electron microscopy (TEM), SCLC, and resonant soft X-ray scattering (RSoXS) measurements. The PFBT4T-C5Si-25%-based PSCs with 270, 420, and 600 nm thick active layers exhibited outstanding power conversion efficiencies (PCEs) of 10.39%, 11.09%, and 10.15%, respectively, readily offering a high thickness tolerance to achieve an unprecedented wide active layer processing window for PCE > 10%. This is also the first PCE of more than 10% achieved by an active layer of a 600 nm thickness level in PSCs. Another notable feature is very high fill factors of more than 74% and 71% being achieved for very thick active layers of 420 and 600 nm, respectively. The results suggest that side-chain engineering through the incorporation of a partial siloxane-terminated side chain is a unique handle to afford new photovoltaic polymers with enhanced vertical carrier transport towards application in roll-to-roll processing of PSCs.

Graphical abstract: Low band gap conjugated polymers combining siloxane-terminated side chains and alkyl side chains: side-chain engineering achieving a large active layer processing window for PCE > 10% in polymer solar cells

Supplementary files

Article information

Article type
Paper
Submitted
27 Jun 2017
Accepted
24 Jul 2017
First published
25 Jul 2017

J. Mater. Chem. A, 2017,5, 17619-17631

Low band gap conjugated polymers combining siloxane-terminated side chains and alkyl side chains: side-chain engineering achieving a large active layer processing window for PCE > 10% in polymer solar cells

X. Liu, L. Nian, K. Gao, L. Zhang, L. Qing, Z. Wang, L. Ying, Z. Xie, Y. Ma, Y. Cao, F. Liu and J. Chen, J. Mater. Chem. A, 2017, 5, 17619 DOI: 10.1039/C7TA05583H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements