Issue 40, 2017

Charge storage at the nanoscale: understanding the trends from the molecular scale perspective

Abstract

Supercapacitors or electrical double layer (EDL) capacitors store charge via rearrangement of ions in electrolytes and their adsorption on electrode surfaces. They are actively researched for multiple applications requiring longer cycling life, broader operational temperature ranges, and higher power density compared to batteries. Recent developments in nanostructured carbon-based electrodes with a high specific surface area have demonstrated the potential to significantly increase the energy density of supercapacitors. Molecular modeling of electrolytes near charged electrode surfaces has provided key insights into the fundamental aspects of charge storage at the nanoscale, including an understanding of the mechanisms of ion adsorption and dynamics at flat surfaces and inside nanopores, and the influence of curvature, roughness, and electronic structure of electrode surfaces. Here we review these molecular modeling findings for EDL capacitors, dual ion batteries and pseudo-capacitors together with available experimental observations and put this analysis into the perspective of future developments in this field. Current research trends and future directions are discussed.

Graphical abstract: Charge storage at the nanoscale: understanding the trends from the molecular scale perspective

Article information

Article type
Review Article
Submitted
13 Jun 2017
Accepted
29 Aug 2017
First published
29 Aug 2017

J. Mater. Chem. A, 2017,5, 21049-21076

Charge storage at the nanoscale: understanding the trends from the molecular scale perspective

J. Vatamanu, O. Borodin, M. Olguin, G. Yushin and D. Bedrov, J. Mater. Chem. A, 2017, 5, 21049 DOI: 10.1039/C7TA05153K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements