Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 38, 2017

Biomass willow catkin-derived Co3O4/N-doped hollow hierarchical porous carbon microtubes as an effective tri-functional electrocatalyst

Author affiliations

Abstract

Oxygen reduction (ORR), oxygen evolution (OER), and hydrogen evolution (HER) reactions are extremely important electrochemical reactions for electrochemical energy conversion and storage. The development of highly efficient, low-cost, durable, and sustainable electrocatalysts is required for these three crucial electrochemical reactions. Herein, an effective tri-functional electrocatalyst, Co3O4 nanoparticle-modified N-doped hollow hierarchical porous carbon microtubes (Co3O4/NCMTs), was successfully prepared via the pyrolysis of metal cobalt(II) complex willow catkin biomass under an argon–ammonia atmosphere. The obtained carbon materials inherit the original micron tubular structure of the willow catkin and form a hollow micro/mesoporous hierarchical construction. Ammonia can hugely elevate the content of doped nitrogen in the carbon skeleton. The doped N and Co3O4 nanoparticles contribute to form more active sites for the electrochemical reactions. When compared with the Pt/C catalyst, the Co3O4/NCMT-800 electrocatalyst with a positive onset potential (E0 = 0.906 V) and half-wave potential (E1/2 = 0.778 V) exhibit superior catalytic stability and tolerance to methanol in the ORR. The optimal Co3O4/NCMT-800 material exhibit high activity with a low overpotential of 0.35 V for the OER and 0.21 V for the HER to achieve a current density of 10 mA cm−2. The enhanced OER and HER performance of the Co3O4/NCMTs contribute to improve the overall water splitting ability. The excellent tri-functional electrocatalytic activity can be ascribed to the doped N and Co3O4 nanoparticles loaded into the hollow hierarchical porous carbon microtubes that accelerate electron transport and enhance charge delocalization. Due to the abundant biomass precursor with a unique structure, the advanced non-noble metal-doped hollow porous carbon materials exhibit outstanding application prospects in the electrocatalysis field.

Graphical abstract: Biomass willow catkin-derived Co3O4/N-doped hollow hierarchical porous carbon microtubes as an effective tri-functional electrocatalyst

Supplementary files

Article information


Submitted
08 Jun 2017
Accepted
17 Aug 2017
First published
17 Aug 2017

J. Mater. Chem. A, 2017,5, 20170-20179
Article type
Paper

Biomass willow catkin-derived Co3O4/N-doped hollow hierarchical porous carbon microtubes as an effective tri-functional electrocatalyst

B. Wang, L. Xu, G. Liu, P. Zhang, W. Zhu, J. Xia and H. Li, J. Mater. Chem. A, 2017, 5, 20170 DOI: 10.1039/C7TA05002J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements