Issue 24, 2017

Nanoconfinement of redox reactions enables rapid zinc iodide energy storage with high efficiency

Abstract

A key challenge for present-day electric energy storage systems, such as supercapacitors and batteries, is to meet the world's growing demand for high performances, low cost, and environmental-friendliness. Here, we introduce a hybrid energy storage system combining zinc iodide (ZnI2) as redox electrolyte with a nanoporous activated carbon fiber (ACF) cathode and a zinc disk anode. We found that the nanopores (<1 nm) of ACF lead to a strong adsorption behavior of iodide and triiodide. Hence, this system exhibits low self-discharge rates without applying an ion exchange membrane. The high power performance (20.0 kW kg−1) originates from the enhanced redox kinetics of the iodide system as evidenced by electrochemical analysis. Considering the high specific energy (226 W h kg−1), the ACF/Zn ZnI2 battery represents an alternative for lead acid, Ni–Zn, and Ni–Cd batteries, while providing a supercapacitor-like power performance in the range of seconds to minutes charging times.

Graphical abstract: Nanoconfinement of redox reactions enables rapid zinc iodide energy storage with high efficiency

Supplementary files

Article information

Article type
Paper
Submitted
26 Apr 2017
Accepted
25 May 2017
First published
25 May 2017

J. Mater. Chem. A, 2017,5, 12520-12527

Nanoconfinement of redox reactions enables rapid zinc iodide energy storage with high efficiency

J. Lee, P. Srimuk, S. Fleischmann, A. Ridder, M. Zeiger and V. Presser, J. Mater. Chem. A, 2017, 5, 12520 DOI: 10.1039/C7TA03589F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements