Jump to main content
Jump to site search

Issue 31, 2017
Previous Article Next Article

Synergistically toughening nacre-like graphene nanocomposites via gel-film transformation

Author affiliations

Abstract

The gold standard of natural nacre provides the inspiration for assembling bioinspired nanocomposites. Herein, the gel-film transformation method, a feasible and economical strategy, was applied to fabricate flexible, large-area, and hierarchical porous graphene oxide (GO)-based nanocomposites with excellent properties. In this study, the GO-polymer nanocomposite hydrogels could be transformed into nanocomposite films with hierarchically laminated structures via the evaporation self-assembly technique, followed by introduction of ionic cross-linking into the nanocomposite films. The obtained bioinspired nanocomposites, with synergistic effect originating from hydrogen bonds and ionic bonds, have an excellent tensile strength of 475.2 ± 13.0 MPa and a toughness of 6.6 ± 0.3 MJ m−3, as well as a high electrical conductivity of 297.1 S cm−1. Therefore, this type of strong integrated nacre-like graphene nanocomposites have great potential applications in aerospace and flexible supercapacitor electrodes.

Graphical abstract: Synergistically toughening nacre-like graphene nanocomposites via gel-film transformation

Back to tab navigation

Supplementary files

Article information


Submitted
24 Apr 2017
Accepted
01 Jun 2017
First published
01 Jun 2017

J. Mater. Chem. A, 2017,5, 16386-16392
Article type
Paper

Synergistically toughening nacre-like graphene nanocomposites via gel-film transformation

S. Gong, Q. Zhang, R. Wang, L. Jiang and Q. Cheng, J. Mater. Chem. A, 2017, 5, 16386
DOI: 10.1039/C7TA03535G

Social activity

Search articles by author

Spotlight

Advertisements