Issue 24, 2017

Understanding the lithiation/delithiation mechanism of Si1−xGex alloys

Abstract

GexSi1−x alloys have demonstrated synergetic effects as lithium-ion battery (LIB) anodes, because silicon brings its high lithium storage capacity and germanium its better electronic and Li ion conductivity. Previous studies primarily focused on intricate nanostructured alloys with high costs of production, but here we studied the simpler Si0.5Ge0.5 alloy as a composite electrode. The electrochemical mechanism is explored by a combination of in situ and operando techniques such as powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Raman spectroscopy and 7Li solid state nuclear magnetic resonance spectroscopy (NMR), all providing unique and complementary information about phase transformations during cycling. In this way amorphization of c-Si0.5Ge0.5 upon lithiation (discharging) and crystallization of a new phase at the end of the discharge have been identified. Additionally, an evolution of the refined cell parameters was observed and related to an overlithiation process. The crystallinity of Si0.5Ge0.5 was not restored upon charging (delithiation) and an amorphous phase was obtained. Lastly, an improved understanding of the electrochemical mechanism of Si1−xGex alloys is mandatory for assessing their viability as LIB anodes.

Graphical abstract: Understanding the lithiation/delithiation mechanism of Si1−xGex alloys

Supplementary files

Article information

Article type
Paper
Submitted
08 Mar 2017
Accepted
16 May 2017
First published
24 May 2017

J. Mater. Chem. A, 2017,5, 12462-12473

Understanding the lithiation/delithiation mechanism of Si1−xGex alloys

L. C. Loaiza, E. Salager, N. Louvain, A. Boulaoued, A. Iadecola, P. Johansson, L. Stievano, V. Seznec and L. Monconduit, J. Mater. Chem. A, 2017, 5, 12462 DOI: 10.1039/C7TA02100C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements