Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 23, 2017
Previous Article Next Article

Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes

Author affiliations

Abstract

Improvement of the performance of Li metal anodes is critical to enable high energy density rechargeable battery systems beyond Li-ion. However, a complete mechanistic understanding of electrode overpotential variations that occur during extended cycling of Li metal is lacking. Herein, we demonstrate that when using a Li metal electrode, the dynamic changes in voltage during extended cycles can be increasingly attributed to mass transport. It is shown that these mass transport effects arise as a result of dead Li accumulation at the Li metal electrode, which introduces a tortuous pathway for Li-ion transport. In Li–Li symmetric cells, mass transport effects cause the shape of the galvanostatic voltage response to change from “peaking” to “arcing”, along with an increase in total electrode overpotential. The continued accumulation of dead Li is also conclusively shown to directly cause capacity fade and rapid “failure” of Li–LCO full cells containing Li metal anodes. This work provides detailed insights into the coupled relationships between cycling, interphase morphology, mass transport and the overall cell performance. Furthermore, this work helps underscore the potential of Li–Li symmetric cells as a powerful analytical tool for understanding the effects of Li metal electrodes in full cell batteries.

Graphical abstract: Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes

Back to tab navigation

Supplementary files

Article information


Submitted
12 Jan 2017
Accepted
14 Mar 2017
First published
23 Mar 2017

J. Mater. Chem. A, 2017,5, 11671-11681
Article type
Paper

Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes

K. Chen, K. N. Wood, E. Kazyak, W. S. LePage, A. L. Davis, A. J. Sanchez and N. P. Dasgupta, J. Mater. Chem. A, 2017, 5, 11671
DOI: 10.1039/C7TA00371D

Social activity

Search articles by author

Spotlight

Advertisements