Issue 18, 2017

Hierarchical porous C/MnO2 composite hollow microspheres with enhanced supercapacitor performance

Abstract

The successful application of supercapacitors in energy conversion and storage hinges on the development of highly efficient and stable electrode materials. Herein, a composite of manganese oxide (MnO2) and N-doped hollow carbon spheres (NHCSs) was fabricated by a facile two-step process for supercapacitor electrodes. The MnO2–NHCS composite had a NHCS core and a shell composed of hierarchical birnessite-type MnO2 nanoflakes. The NHCSs in the composite serve not only as the template for the growth of MnO2 nanoflakes, but also as the electrically conductive channel for electrochemical performance enhancement. The physicochemical and electrochemical properties of the MnO2–NHCS composite were significantly enhanced as compared with those of MnO2 hollow spheres (MnO2 HSs). The asymmetric supercapacitors (ASCs) assembled with MnO2–NHCS anodes and NHCS cathodes exhibited a high energy density of 26.8 W h kg−1 at a power density of 233 W kg−1, which is superior to those of the ASCs assembled with MnO2 HS anodes and NHCS cathodes (13.5 W h kg−1 at 229 W kg−1). The MnO2–NHCS ASCs also show superior cycling stability for 4000 cycles. The enhanced electrochemical performance of the MnO2–NHCSs makes them a promising electrode material for application in supercapacitors and potentially other energy storage devices.

Graphical abstract: Hierarchical porous C/MnO2 composite hollow microspheres with enhanced supercapacitor performance

Supplementary files

Article information

Article type
Paper
Submitted
11 Jan 2017
Accepted
19 Mar 2017
First published
20 Mar 2017

J. Mater. Chem. A, 2017,5, 8635-8643

Hierarchical porous C/MnO2 composite hollow microspheres with enhanced supercapacitor performance

T. Liu, C. Jiang, W. You and J. Yu, J. Mater. Chem. A, 2017, 5, 8635 DOI: 10.1039/C7TA00363C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements