Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 23, 2017
Previous Article Next Article

High-photovoltage all-polymer solar cells based on a diketopyrrolopyrrole–isoindigo acceptor polymer

Author affiliations

Abstract

In this work, we synthesized and characterized two new n-type polymers PTDPP-PyDPP and PIID-PyDPP. The former polymer is composed of pyridine-flanked diketopyrrolopyrrole (PyDPP) and thiophene-flanked diketopyrrolopyrrole (TDPP). The latter polymer consists of PyDPP and isoindigo (IID). PIID-PyDPP exhibits a much higher absorption coefficient compared to the widely used naphthalene diimide (NDI)-based acceptor polymers, and its high-lying LUMO level affords it to achieve a high open-circuit voltage (Voc). As a result, an all-polymer solar cell (all-PSC) fabricated from a high band gap polymer PBDTTS-FTAZ as the donor and PIID-PyDPP as the acceptor attained a high Voc of 1.07 V with a power conversion efficiency (PCE) of 4.2%. So far, it has been one of the highest PCEs recorded from all-PSCs using diketopyrrolopyrrole (DPP)-based acceptors. Gratifyingly, no obvious PCE decay was observed in two weeks, unraveling good stability of the all-PSC. This work demonstrates that the electron-withdrawing PyDPP unit can be a promising building block for new acceptor polymers in all-PSCs.

Graphical abstract: High-photovoltage all-polymer solar cells based on a diketopyrrolopyrrole–isoindigo acceptor polymer

Back to tab navigation

Supplementary files

Article information


Submitted
30 Oct 2016
Accepted
25 Nov 2016
First published
25 Nov 2016

J. Mater. Chem. A, 2017,5, 11693-11700
Article type
Paper

High-photovoltage all-polymer solar cells based on a diketopyrrolopyrrole–isoindigo acceptor polymer

Z. Li, X. Xu, W. Zhang, Z. Genene, W. Mammo, A. Yartsev, M. R. Andersson, R. A. J. Janssen and E. Wang, J. Mater. Chem. A, 2017, 5, 11693
DOI: 10.1039/C6TA09379E

Social activity

Search articles by author

Spotlight

Advertisements