Issue 30, 2016

Smart material concept: reversible microstructural self-regeneration for catalytic applications

Abstract

This paper presents a proof-of-concept study and demonstrates the next generation of a “smart” catalyst material, applicable to high temperature catalysis and electro-catalysis such as gas processing and as a catalyst for solid oxide cells. A modified citrate-gel technique was developed for the synthesis of LaxSr1−1.5xTi1−yNiyO3−δ. This method allowed the synthesis of single phase materials with a high specific surface area, after the first calcination step at temperatures as low as 650 °C. Up to 5 at% of nickel could be incorporated into the perovskite structure at this low calcination temperature. X-ray powder diffraction and microscopy techniques have proven the exsolution of nickel nanoclusters under low oxygen partial pressure. The amount of exsoluted nickel nanoparticles was sensitive to surface finishing, whereby much more exsoluted nanoparticles were observed on pre-treated and polished surfaces as compared to original ones. Increasing A-site deficiency leads to a larger number of nickel particles on the surface, indicating a destabilizing influence of the A-site vacancies on the B-site metal cations. Repetitive redox cycles prove that the nickel exsolution and re-integration is a fully reversible process. These materials working in a cyclic and repetitive way may overcome the drawbacks of currently used conventional catalysts used for high temperature systems and overcome major degradation issues related to catalyst poisoning and coarsening-induced aging.

Graphical abstract: Smart material concept: reversible microstructural self-regeneration for catalytic applications

Supplementary files

Article information

Article type
Paper
Submitted
24 Apr 2016
Accepted
22 Jun 2016
First published
22 Jun 2016

J. Mater. Chem. A, 2016,4, 11939-11948

Smart material concept: reversible microstructural self-regeneration for catalytic applications

D. Burnat, R. Kontic, L. Holzer, P. Steiger, D. Ferri and A. Heel, J. Mater. Chem. A, 2016, 4, 11939 DOI: 10.1039/C6TA03417A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements