Issue 21, 2016

Factors affecting cycling life of LiNi0.8Co0.15Al0.05O2 for lithium-ion batteries

Abstract

Factors affecting the cycling life of cylindrical lithium-ion batteries of LiNi0.8Co0.15Al0.05O2 (NCA) with graphite were examined in terms of the rechargeable capacity and polarization of NCA derivatives of LizNi0.8Co0.15Al0.05O2−δ (0.8 ≤ z ≤ 1.05). NCA derivatives with rock-salt domains in the structure were prepared by a co-precipitation method and the structures of [Li1−yNiy]3(b)[Ni,Co,Al]3(a)O26(c) based on a space group of R[3 with combining macron]m were refined by a Rietveld method of the XRD patterns. The electrochemical reactivity of the NCA derivatives with rock-salt domains was examined in non-aqueous lithium cells, and it was found that the rechargeable capacities (Q) of the samples decrease linearly as the amount of rock-salt domain (y) increases. An empirical relation is obtained to be Q = 181.4 − 725.5y in which Q reaches zero at y = 0.25, which is derived from not only the capacity loss owing to inactive rock-salt domains but also the polarization increase. The galvanostatic intermittent titration technique (GITT) measurement told us that polarization of NCA derivatives increases when the amount of rock-salt domains is above 2%, i.e., y > 0.02, and such a relation is remarkable in the lithium insertion direction into the structure, which is ascribed to slow lithium ion mobility due to nickel ions in the lithium layers. The NCA derivatives with increased rock-salt domains of above 2% deteriorate rapidly in non-aqueous lithium cells upon charge and discharge cycles, which is ascribed to the cumulative increase in polarization during charge and discharge. An extended cycling test for cylindrical lithium-ion batteries of the NCA derivatives with a graphite negative electrode at elevated temperature was performed and the quantitative relation is discussed thereof.

Graphical abstract: Factors affecting cycling life of LiNi0.8Co0.15Al0.05O2 for lithium-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
10 Feb 2016
Accepted
19 Apr 2016
First published
20 Apr 2016
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2016,4, 8350-8358

Factors affecting cycling life of LiNi0.8Co0.15Al0.05O2 for lithium-ion batteries

Y. Makimura, T. Sasaki, T. Nonaka, Y. F. Nishimura, T. Uyama, C. Okuda, Y. Itou and Y. Takeuchi, J. Mater. Chem. A, 2016, 4, 8350 DOI: 10.1039/C6TA01251E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements