Jump to main content
Jump to site search

Issue 18, 2016
Previous Article Next Article

Flexible high performance hybrid AZO/Ag-nanowire/AZO sandwich structured transparent conductors for flexible Cu(In,Ga)Se2 solar cell applications

Author affiliations

Abstract

We report on the fabrication of a robust and flexible transparent electrode to replace costly and fragile indium tin oxide (ITO) used in flexible Cu(In,Ga)Se2 solar cells, composed of an aluminum doped zinc oxide (AZO)/Ag-nanowires/aluminum doped zinc oxide (AZO) (AAA herein) sandwich structure. The Ag-NWs networks form low-resistance, long-range pathways throughout the electrode that are able to maintain efficient charge carrier collection and extraction after strenuous mechanical bending. The improved durability of the AAA electrode enables our CIGS solar cells to maintain ∼95% of their initial power conversion efficiency, following 1000 bending cycles. In comparison, devices fabricated using AZO and ITO electrodes are only able to maintain ∼57 and ∼5%, respectively, due to crack formation and delamination of the films. This AAA sandwich structure electrode could therefore serve as a high-performance electrode for numerous flexible optoelectronic applications.

Graphical abstract: Flexible high performance hybrid AZO/Ag-nanowire/AZO sandwich structured transparent conductors for flexible Cu(In,Ga)Se2 solar cell applications

Back to tab navigation

Supplementary files

Article information


Submitted
07 Nov 2015
Accepted
04 Jan 2016
First published
06 Jan 2016

J. Mater. Chem. A, 2016,4, 6980-6988
Article type
Paper

Flexible high performance hybrid AZO/Ag-nanowire/AZO sandwich structured transparent conductors for flexible Cu(In,Ga)Se2 solar cell applications

W. Tsai, S. R. Thomas, C. Hsu, Y. Huang, J. Tseng, T. Wu, C. Chang, Z. M. Wang, J. Shieh, C. Shen and Y. Chueh, J. Mater. Chem. A, 2016, 4, 6980
DOI: 10.1039/C5TA09000H

Social activity

Search articles by author

Spotlight

Advertisements