Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 3, 2016
Previous Article Next Article

Visible-light-driven photocatalytic bacterial inactivation and the mechanism of zinc oxysulfide under LED light irradiation

Author affiliations

Abstract

Zinc oxysulfide (ZnO0.6S0.4) nanoparticles, prepared via a coprecipitation–calcination method, were used as an effective visible-light-driven (VLD) photocatalyst for the inactivation of a typical Gram-negative bacterium, Escherichia coli K-12 for the first time. An energy-saving white light emitting diode (LED) lamp was employed as the visible light (VL) source. Compared to the only UV-responsive pure ZnO and ZnS, the light active region of ZnO0.6S0.4 was expanded as far as 550 nm in the VL region. Significantly, the obtained ZnO0.6S0.4 nanoparticles showed considerable VLD photocatalytic bacterial inactivation activity under white LED irradiation. The mechanism of inactivation was investigated in-depth. Photogenerated holes (h+) and hydrogen peroxide (H2O2) were predominantly responsible for the bacterial inactivation. Moreover, H2O2 was evidenced to be derived only from electrons in the conduction band of ZnO0.6S0.4 in the present photocatalytic system. The integrated damage from the direct oxidation effect of the h+ and continuous accumulation of H2O2 resulted in a high bacterial inactivation efficiency of ZnO0.6S0.4 nanoparticles under visible white LED lamp irradiation. The destruction process of bacterial cells by the ZnO0.6S0.4 photocatalyst was also monitored. This was shown to begin with an attack of the cell membrane and then end in the release of intracellular components.

Graphical abstract: Visible-light-driven photocatalytic bacterial inactivation and the mechanism of zinc oxysulfide under LED light irradiation

Back to tab navigation

Supplementary files

Article information


Submitted
07 Oct 2015
Accepted
30 Nov 2015
First published
30 Nov 2015

J. Mater. Chem. A, 2016,4, 1052-1059
Article type
Paper
Author version available

Visible-light-driven photocatalytic bacterial inactivation and the mechanism of zinc oxysulfide under LED light irradiation

D. Wu, W. Wang, T. W. Ng, G. Huang, D. Xia, H. Y. Yip, H. K. Lee, G. Li, T. An and P. K. Wong, J. Mater. Chem. A, 2016, 4, 1052
DOI: 10.1039/C5TA08044D

Social activity

Search articles by author

Spotlight

Advertisements