Jump to main content
Jump to site search

Issue 23, 2015
Previous Article Next Article

Efficient ceramic zeolite membranes for CO2/H2 separation

Author affiliations

Abstract

Membranes are considered one of the most promising technologies for CO2 separation from industrially important gas mixtures like synthesis gas or natural gas. In order for the membrane separation process to be efficient, membranes, in addition to being cost-effective, should be durable and possess high flux and sufficient selectivity. Current CO2-selective membranes are low flux polymeric membranes with limited chemical and thermal stability. In the present work, robust and high flux ceramic MFI zeolite membranes were prepared and evaluated for separation of CO2 from H2, a process of great importance to synthesis gas processing, in a broad temperature range of 235–310 K and at an industrially relevant feed pressure of 9 bar. The observed membrane separation performance in terms of both selectivity and flux was superior to that previously reported for the state-of-the-art CO2-selective zeolite and polymeric membranes. Our initial cost estimate of the membrane modules showed that the present membranes were economically viable. We also showed that the ceramic zeolite membrane separation system would be much more compact than a system relying on polymeric membranes. Our findings therefore suggest that the developed high flux ceramic zeolite membranes have great potential for selective, cost-effective and sustainable removal of CO2 from synthesis gas.

Graphical abstract: Efficient ceramic zeolite membranes for CO2/H2 separation

Back to tab navigation

Publication details

The article was received on 24 Mar 2015, accepted on 14 May 2015 and first published on 14 May 2015


Article type: Paper
DOI: 10.1039/C5TA02152A
Author version
available:
Download author version (PDF)
Citation: J. Mater. Chem. A, 2015,3, 12500-12506
  • Open access: Creative Commons BY license
  •   Request permissions

    Efficient ceramic zeolite membranes for CO2/H2 separation

    D. Korelskiy, P. Ye, S. Fouladvand, S. Karimi, E. Sjöberg and J. Hedlund, J. Mater. Chem. A, 2015, 3, 12500
    DOI: 10.1039/C5TA02152A

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements