Issue 13, 2015

One-step synthesis of zinc–cobalt layered double hydroxide (Zn–Co-LDH) nanosheets for high-efficiency oxygen evolution reaction

Abstract

Two-dimensional (2D) nanomaterials show great potential for electrocatalysis or other applications that require large surface area. In this work, we developed porous zinc–cobalt layered double hydroxide (Zn–Co-LDH) nanosheets by using a one-step microwave-assisted approach, and examine their oxygen evolution reaction (OER) performance. The Zn–Co-LDH nanosheets with a high specific surface area of 116.4 m2 g−1 exhibit good OER activity, expressed as low onset overpotential, small Tafel slope and large exchange current density. At the overpotential of 0.54 V, the current density of Zn–Co-LDH nanosheets is about 15.06 mA cm−2, which is much higher than that of Zn–Co-LDH nanoparticles. The comparable electrocatalytic performance may be attributed to the porous 2D structure generating more active sites and higher electronic conductivity. Furthermore, the obtained Zn–Co-LDH nanosheets show good stability during long time running at 1.55 V vs. RHE. Accordingly, an effective OER catalyst is exploited by using a simple microwave-assisted synthesis. Such an effective method could be extended to large-scale synthesis of uniform and stable 2D LDH nanomaterials.

Graphical abstract: One-step synthesis of zinc–cobalt layered double hydroxide (Zn–Co-LDH) nanosheets for high-efficiency oxygen evolution reaction

Supplementary files

Article information

Article type
Paper
Submitted
03 Dec 2014
Accepted
03 Feb 2015
First published
05 Feb 2015

J. Mater. Chem. A, 2015,3, 6878-6883

Author version available

One-step synthesis of zinc–cobalt layered double hydroxide (Zn–Co-LDH) nanosheets for high-efficiency oxygen evolution reaction

C. Qiao, Y. Zhang, Y. Zhu, C. Cao, X. Bao and J. Xu, J. Mater. Chem. A, 2015, 3, 6878 DOI: 10.1039/C4TA06634K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements