Issue 48, 2014

In situ polymerization of mechanically reinforced, thermally healable graphene oxide/polyurethane composites based on Diels–Alder chemistry

Abstract

Covalently bonded graphene oxide/polyurethane (GO/PU) composites with significant reinforcement and thermally healable properties were developed via in situ polymerization based on Diels–Alder (DA) chemistry. The PU prepolymer was prepared with GO, 4,4-diphenylmethane diisocyanate, and poly(tetramethylene glycol) and blocked by using furfuryl alcohol firstly. Then the prepolymer was cross-linked by using bifunctional maleimide via DA chemistry. SEM shows that the GO was dispersed uniformly in the PU matrix. The DA and retro-DA reactions were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry separately. Tensile tests showed that with the incorporation of 0.1 wt% of GO, the tensile modulus of GO/PU composites increased from 9.80 MPa to 21.95 MPa, and the tensile strength and elongation at break of the GO/PU composites increased by more than 367% and 210%, respectively. Furthermore, the composites had thermally healable ability which was inspected by using an atomic force microscope and the strain–stress test. The healing efficiency of 78% on average was achieved which was determined by the recovery of breaking stress and a healing mechanism was tentatively proposed. Therefore, the covalently bonded self-healing GO/PU composites could be used as smart materials and structural materials.

Graphical abstract: In situ polymerization of mechanically reinforced, thermally healable graphene oxide/polyurethane composites based on Diels–Alder chemistry

Article information

Article type
Paper
Submitted
19 Sep 2014
Accepted
17 Oct 2014
First published
17 Oct 2014

J. Mater. Chem. A, 2014,2, 20642-20649

Author version available

In situ polymerization of mechanically reinforced, thermally healable graphene oxide/polyurethane composites based on Diels–Alder chemistry

J. Li, G. Zhang, L. Deng, S. Zhao, Y. Gao, K. Jiang, R. Sun and C. Wong, J. Mater. Chem. A, 2014, 2, 20642 DOI: 10.1039/C4TA04941A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements