Issue 36, 2014

Uniform nanoparticle coating of cellulose fibers during wet electrospinning

Abstract

This work outlines a newly developed method that allows electrospun cellulose fibers to be coated with nanoparticles during dry-jet wet electrospinning. Cellulose fibers were wet electrospun from a room temperature ionic liquid solvent into a coagulation bath containing an aqueous suspension of magnesium hydroxide nanoparticles to prepare composites of nanofibers coated with functional nanoparticles. Flame retardant cellulose–magnesium hydroxide coated composite fibers were prepared to demonstrate this novel electrospinning method. The placement of the nanoparticles exclusively on the surface of the cellulose fibers dramatically impacted the functionality of the fibers. Electrospun cellulose fibers exhibited an onset of combustion in air at 239 °C and a maximum mass loss at 302 °C. Cellulose fibers with Mg(OH)2 nanoparticles (<50 nm avg. diameter) inside them exhibited an onset of combustion at 267 °C and a maximum mass loss at 315 °C. Cellulose fibers with the same nanoparticles uniformly coated on their surfaces exhibited an onset of combustion at 276 °C and a maximum mass loss at 318 °C. When larger Mg(OH)2 nanoparticles (>100 nm avg. diameter) were used, the onset of combustion was 185 °C and the maximum mass loss was at 216 °C when nanoparticles were inside the fibers, and the onset of combustion was 263 °C and the maximum mass loss was at 317 °C for Mg(OH)2 nanoparticle coated cellulose fibers. Simple flame tests showed a similar trend, with nanoparticle-coated fibers being fire resistant and fibers with nanoparticles inside burned rapidly upon exposure to an open flame.

Graphical abstract: Uniform nanoparticle coating of cellulose fibers during wet electrospinning

Supplementary files

Article information

Article type
Paper
Submitted
24 Jun 2014
Accepted
14 Jul 2014
First published
07 Aug 2014

J. Mater. Chem. A, 2014,2, 15029-15034

Author version available

Uniform nanoparticle coating of cellulose fibers during wet electrospinning

Y. Zheng, J. Miao, N. Maeda, D. Frey, R. J. Linhardt and T. J. Simmons, J. Mater. Chem. A, 2014, 2, 15029 DOI: 10.1039/C4TA03221G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements