Issue 24, 2014

Rutile TiO2-based perovskite solar cells

Abstract

A perovskite solar cell based on rutile TiO2 film was prepared and its photovoltaic performance was compared to an anatase TiO2-based perovskite solar cell. Rutile TiO2 nanoparticles with aspect ratio of 0.2 (20 nm wide and 100 nm long) were prepared by hydrolysis of TiCl4 at ambient temperature. Anatase TiO2 nanoparticles with diameter of about 50 nm were hydrothermally synthesized. The annealed rutile film showed porosity of 60.6%, while lower porosity of 49.1% was detected in the anatase TiO2 film. CH3NH3PbI3 perovskite was deposited on TiO2 film using either a one-step spin coating or two-step dipping method. 2,2′,7,7′-Tetrakis(N,N-p-dimethoxy-phenylamino)-9,9′-spirobifluorene (spiro-MeOTAD) was used as a hole transporting material. One-step deposition led to average power conversion efficiency (PCE) of 8.19% from the rutile-perovskite solar cells and 7.23% from the anatase-perovskite solar cells, while two-step deposition resulted in higher average PCE of 13.75% for the former device and 13.99% for the latter one. Regardless of the deposition methodologies, the rutile–perovskite solar cell showed generally higher Jsc and lower Voc. Slower electron transport and longer electron lifetime were observed for the rutile-based perovskite solar cell than for the anatase-based one. Although the same perovskite material was used for both rutile and anatase TiO2, the difference in electronic behavior indicates that photo-excited electrons are in part injected to TiO2 and the extent of electron injection can be influenced by the crystal phase of TiO2. Despite longer electron lifetime, the slightly lower voltage of the rutile-based device might be due to the fact that the amount of injected electrons was relatively larger for rutile than anatase, leading to a lower Fermi energy level at equilibrium between TiO2 and perovskite. Using a 260 nm-thick rutile TiO2 film, the highest PCE of 14.46% was achieved by depositing CH3NH3PbI3 using a two-step method, in which photocurrent density of 20.02 mA cm−2, open-circuit voltage of 1.022 V and fill factor of 0.71 were demonstrated.

Graphical abstract: Rutile TiO2-based perovskite solar cells

Supplementary files

Article information

Article type
Paper
Submitted
12 Apr 2014
Accepted
16 Apr 2014
First published
17 Apr 2014

J. Mater. Chem. A, 2014,2, 9251-9259

Rutile TiO2-based perovskite solar cells

J. Lee, T. Lee, P. J. Yoo, M. Grätzel, S. Mhaisalkar and N. Park, J. Mater. Chem. A, 2014, 2, 9251 DOI: 10.1039/C4TA01786B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements