Issue 27, 2014

Synthesis and hydrogen release properties of alkyl-substituted amine-boranes

Abstract

Three organic amine-boranes—diethylenetriamine-borane (C4H13N3·3BH3, DETAB), triethylenetetramine-borane (C6H18N4·4BH3, TETAB) and tetraethylenepentamine-borane (C8H23N5·5BH3, TEPAB)—are synthesized via the liquid-phase reaction of diethylenetriamine (C4H13N3, DETA), triethylenetetramine (C6H18N4, TETA) and tetraethylenepentamine (C8H23N5, TEPA), respectively, with BH3–THF solution. By using high-resolution synchrotron powder X-ray diffraction (HR-XRD), Fourier transform infrared (FTIR), elemental analysis and solid-state 11B nuclear magnetic resonance (NMR) measurements, the structural properties of the three compounds are characterized. Hydrogen desorption properties of these compounds are measured by temperature-programmed desorption (TPD) and thermogravimetry (TG) over a temperature range from 50 to 250 °C, in which 5.5, 6.6 and 6.9 equivalents hydrogen are released in two steps based on the combination of protic (N–H) and hydridic (B–H) hydrogens. It is confirmed by mass spectrometry (MS) results that only H2 is liberated during the thermal decomposition of the three compounds. The dynamics are investigated by isothermal dehydrogenation at various temperatures. Compared with ammonia borane (NH3BH3, AB), these compounds show a faster dehydrogenation rate. A regeneration study shows that DETAB can be regenerated by treating its dehydrogenated products with lithium aluminium hydride (LiAlH4) and ammonium chloride (NH4Cl) at room temperature.

Graphical abstract: Synthesis and hydrogen release properties of alkyl-substituted amine-boranes

Supplementary files

Article information

Article type
Paper
Submitted
04 Apr 2014
Accepted
03 May 2014
First published
08 May 2014

J. Mater. Chem. A, 2014,2, 10682-10687

Author version available

Synthesis and hydrogen release properties of alkyl-substituted amine-boranes

L. Zhang, S. Li, Y. Tan, Z. Tang, Z. Guo and X. Yu, J. Mater. Chem. A, 2014, 2, 10682 DOI: 10.1039/C4TA01631A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements