Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 28, 2014
Previous Article Next Article

Semiconducting:insulating polymer blends for optoelectronic applications—a review of recent advances

Author affiliations

Abstract

In recent years, immense efforts in the organic electronics field have led to unprecedented progress and to devices of ever increasing performance. Despite these advances, new opportunities are sought in order to widen the applications of organic-based technologies and expand their functionalities and features. For this purpose, use of multicomponent systems seems an interesting approach in view of, e.g., increasing the mechanical flexibility and stability of organic electronic products as well as introducing other features such as self-encapsulation. One specific strategy is based on blending polymeric insulators with organic semiconductors; which has led to a desired improvement of the mechanical properties of organic devices, producing in certain scenarios robust and stable architectures. Here we discuss the working principle of semiconductor:insulator blends, examining the different approaches that have recently been reported in literature. We illustrate how organic field-effect transistors (OFET)s and organic solar cells (OPV)s can be fabricated with such systems without detrimental effects on the resulting device characteristics even at high contents of the insulator. Furthermore, we review the various properties that can be enhanced and/or manipulated by blending including air stability, mechanical toughness, H- vs. J-aggregation, etc.

Graphical abstract: Semiconducting:insulating polymer blends for optoelectronic applications—a review of recent advances

Back to tab navigation

Article information


Submitted
03 Mar 2014
Accepted
13 May 2014
First published
21 May 2014

J. Mater. Chem. A, 2014,2, 10818-10824
Article type
Feature Article
Author version available

Semiconducting:insulating polymer blends for optoelectronic applications—a review of recent advances

A. D. Scaccabarozzi and N. Stingelin, J. Mater. Chem. A, 2014, 2, 10818
DOI: 10.1039/C4TA01065E

Social activity

Search articles by author

Spotlight

Advertisements