Issue 26, 2013

Solution-processed benzotrithiophene-based donor molecules for efficient bulk heterojunction solar cells

Abstract

In this study we used convergent syntheses to prepare two novel acceptor–donor–acceptor (A–D–A) small molecules (BT4OT, BT6OT), each containing an electron-rich benzotrithiophene (BT) unit as the core, flanked by octylthiophene units, and end-capped with electron-deficient cyanoacetate units. The number of octylthiophene units affected the optical, electrochemical, morphological, and photovoltaic properties of BT4OT and BT6OT. Moreover, BT4OT and BT6OT possess low-energy highest occupied molecular orbitals (HOMOs), providing them with good air stability and their bulk heterojunction (BHJ) photovoltaic devices with high open-circuit voltages (Voc). A solar cell device containing BT6OT and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) in a 1 : 0.75 ratio (w/w) exhibited a power conversion efficiency (PCE) of 3.61% with a short-circuit current density (Jsc) of 7.39 mA cm−2, a value of Voc of 0.88 V, and a fill factor (FF) of 56.9%. After adding 0.25 vol% of 1-chloronaphthalene (CN) as a processing additive during the formation of the blend film of BT6OT:PC71BM (1 : 0.75, w/w), the PCE increased significantly to 5.05% with values of Jsc of 9.94 mA cm−2, Voc of 0.86 V, and FF of 59.1% as a result of suppressed nanophase molecular aggregation.

Graphical abstract: Solution-processed benzotrithiophene-based donor molecules for efficient bulk heterojunction solar cells

Supplementary files

Article information

Article type
Paper
Submitted
18 Apr 2013
Accepted
07 May 2013
First published
07 May 2013

J. Mater. Chem. A, 2013,1, 7767-7774

Solution-processed benzotrithiophene-based donor molecules for efficient bulk heterojunction solar cells

D. Patra, C. Chiang, W. Chen, K. Wei, M. Wu and C. Chu, J. Mater. Chem. A, 2013, 1, 7767 DOI: 10.1039/C3TA11544E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements