Issue 29, 2013

A novel polymer gel electrolyte for highly efficient dye-sensitized solar cells

Abstract

A structurally interconnected block copolymer was facilely prepared by the oligomerization of poly(oxyethylene)-segmented diamine and 4,4′-oxydiphthalic anhydride, followed by a late-stage curing to generate amide-imide cross-linked gels. The gel structure, with multiple functionalities including poly(oxyethylene) segments, amido-acid linkers, amine termini, and amide cross-linker was characterized by Fourier transform infrared spectroscopy. The gel-like copolymer was used to absorb a liquid electrolyte; formation of 3D interconnected nanochannels, as could be observed by field emission scanning electronic microscopy has confirmed this absorption of the liquid electrolyte by the copolymer. This elastomeric copolymer was used as the matrix of a polymer gel electrolyte (PGE) for a dye-sensitized solar cell (DSSC), which shows extremely high photovoltaic performance (soaking for 1 h in the electrolyte). In particular, the PGE containing 76.8 wt% of the liquid electrolyte renders a power conversion efficiency of 9.48% for its DSSC, with a short-circuit photocurrent density of 19.50 mA cm−2, an open-circuit voltage of 0.76 V, and a fill factor of 0.64. The outstanding performance of the gel-state DSSC, superior to that (8.84%) of the DSSC with the liquid electrolyte, is mainly ascribed to the suppression of the back electron transfer through the PGE. Electrochemical impedance spectra, and dark current measurements were used to substantiate the explanations of the photovoltaic parameters.

Graphical abstract: A novel polymer gel electrolyte for highly efficient dye-sensitized solar cells

Supplementary files

Article information

Article type
Paper
Submitted
02 Apr 2013
Accepted
10 May 2013
First published
13 May 2013

J. Mater. Chem. A, 2013,1, 8471-8478

A novel polymer gel electrolyte for highly efficient dye-sensitized solar cells

R. Dong, S. Shen, H. Chen, C. Wang, P. Shih, C. Liu, R. Vittal, J. Lin and K. Ho, J. Mater. Chem. A, 2013, 1, 8471 DOI: 10.1039/C3TA11331K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements