Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 18, 2013
Previous Article Next Article

Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)4 secondary building unit

Author affiliations

Abstract

Metal–organic frameworks (MOFs) with the Zr6O4(OH)4 secondary building unit (SBU) have been of particular interest for potential commercial and industrial uses because they can be easily tailored and are reported to be chemically and thermally stable. However, we show that there are significant changes in chemical and thermal stability of Zr6O4(OH)4 MOFs with the incorporation of different organic linkers. As the number of aromatic rings is increased from one to two in 1,4-benzene dicarboxylate (UiO-66, ZrMOF–BDC) and 4,4′-biphenyl dicarboxylate (UiO-67, ZrMOF–BPDC), the Zr6O4(OH)4 SBU becomes more susceptible to chemical degradation by water and hydrochloric acid. Furthermore, as the linker is replaced with 2,2′-bipyridine-5,5′-dicarboxylate (ZrMOF–BIPY) the chemical stability decreases further as the MOF is susceptible to chemical breakdown by protic chemicals such as methanol and isopropanol. The results reported here bring into question the superior structural stability of the UiO-67 analogs as reported by others. Furthermore, the degradation mechanisms proposed here may be applied to other classes of MOFs containing aromatic dicarboxylate organic linkers, in order to predict their structural stability upon exposure to solvents.

Graphical abstract: Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)4 secondary building unit

Back to tab navigation

Supplementary files

Article information


Submitted
13 Feb 2013
Accepted
15 Mar 2013
First published
18 Mar 2013

J. Mater. Chem. A, 2013,1, 5642-5650
Article type
Paper

Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)4 secondary building unit

J. B. DeCoste, G. W. Peterson, H. Jasuja, T. G. Glover, Y. Huang and K. S. Walton, J. Mater. Chem. A, 2013, 1, 5642
DOI: 10.1039/C3TA10662D

Social activity

Search articles by author

Spotlight

Advertisements