Issue 4, 2013

Chemically tailoring the nanostructure of graphenenanosheets to confine sulfur for high-performance lithium-sulfur batteries

Abstract

The commercialization of lithium–sulfur (Li–S) batteries has so far been limited by their rapid capacity fading, which is induced by dissolution of intermediate polysulfides and the pulverization of the sulfur cathode due to volume expansion. Herein, we reported an efficient strategy to confine active sulfur in chemically tailored graphene nanosheets, which were prepared via modified chemical activation of hydrothermal reduced graphene oxide hydrogels. Due to its high specific surface area, large pore volume, controllable size and distribution of nanopores, the two-dimensional (2D) highly porous activated graphene nanosheets (AGNs) were proved to be a promising scaffold to uniformly confine elemental sulfur (S) in their nanopores with high loading. The resultant AGNs/S nanocomposites exhibited a reversible capacity up to 1379 mA h g−1 at 0.2 C as well as remarkable cycling stability, which may contribute to the desirable structural features. The dense nanopores of AGNs, as “micro-reactors” for the electrochemical reactions of sulfur, minimized polysulfide dissolution and shuttling in the electrolyte, and also reserved fast transport of lithium ions to the sequestered sulfur by ensuring good electrolyte penetration. Furthermore, the AGNs with good electronic conductivity allowed good transport of electrons from/to the poorly conducting sulfur for electrochemical reactions at high rates.

Graphical abstract: Chemically tailoring the nanostructure of graphene nanosheets to confine sulfur for high-performance lithium-sulfur batteries

Supplementary files

Article information

Article type
Paper
Submitted
21 Sep 2012
Accepted
30 Oct 2012
First published
30 Oct 2012

J. Mater. Chem. A, 2013,1, 1096-1101

Chemically tailoring the nanostructure of graphene nanosheets to confine sulfur for high-performance lithium-sulfur batteries

B. Ding, C. Yuan, L. Shen, G. Xu, P. Nie, Q. Lai and X. Zhang, J. Mater. Chem. A, 2013, 1, 1096 DOI: 10.1039/C2TA00396A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements