Issue 19, 2021

Quantification of the mesh structure of bundled actin filaments

Abstract

Biopolymer networks are essential for a wide variety of cellular functions. The biopolymer actin is known to self-assemble into a variety of spatial structures in response to physiological and physical mechanisms. So far, the mechanics of networks of single actin filaments and bundles has previously been described. However, the spatial structure of actin bundles remains poorly understood. Here, we investigate this question by bundling actin filaments with systematically varied concentrations of known physical bundling agents (MgCl2 and PEG) and physiological bundling agents (α-actinin and fascin). We image bundled actin networks with confocal microscopy and perform analysis to describe their mesh size and the nearest-distance distribution, which we call “mesh structure”. We find that the mesh size ξ scales universally with actin concentration as ξ ∼ [actin]−1/2. However, the dependence of ξ on the concentration of the bundling agent depends on the agent used. Finally, we find that nearest-distance distributions are best fit by Weibull and Gamma distributions. A complete understanding of the mesh structure of biopolymer networks leads to a more mechanistic understanding of the structure of the cytoskeleton, and can be exploited to design filters with variable porosity for microfluidic devices.

Graphical abstract: Quantification of the mesh structure of bundled actin filaments

Supplementary files

Article information

Article type
Paper
Submitted
19 Mar 2021
Accepted
09 Apr 2021
First published
29 Apr 2021

Soft Matter, 2021,17, 5034-5043

Quantification of the mesh structure of bundled actin filaments

F. Cavanna and J. Alvarado, Soft Matter, 2021, 17, 5034 DOI: 10.1039/D1SM00428J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements