Issue 40, 2020

Polymeric hybrid aerogels and their biomedical applications

Abstract

Aerogels are a class of porous materials that possess extremely high specific surface area, high pore volume, high porosity, and variable chemical structures. They have been widely applied in the fields of aerospace, chemical engineering, construction, electrotechnics, and biomedicine. In recent years a great boom in aerogels has been observed, where various new aerogels with novel physicochemical properties and functions have been synthesized. Nevertheless, native aerogels with a single component normally face severe problems such as low mechanical strength and lack of functions. One strategy to solve the problems is to construct hybrid aerogels. In this study, a comprehensive review on polymer based hybrid aerogels is presented, including polymer–polymer, polymer–carbon material, and polymer–inorganic hybrid aerogels, which will be introduced and discussed in view of their chemical structures and hybrid structures. Most importantly, polymeric hybrid aerogels are classified into three different composition levels, which are molecular-level, molecular-aggregate-level, and aggregate-level, due to the fact that hybrid aerogels with the same chemical structures but with different composition levels might show quite different functions or properties. The biomedical applications of these hybrid aerogels will also be reviewed and discussed, where the polymeric components in the hybrid aerogels provide the main contribution. This review would provide creative design principles for aerogels by considering both their chemical and physical structures.

Graphical abstract: Polymeric hybrid aerogels and their biomedical applications

Article information

Article type
Review Article
Submitted
09 Jul 2020
Accepted
03 Aug 2020
First published
03 Aug 2020

Soft Matter, 2020,16, 9160-9175

Polymeric hybrid aerogels and their biomedical applications

Z. Liu, Y. Ran, J. Xi and J. Wang, Soft Matter, 2020, 16, 9160 DOI: 10.1039/D0SM01261K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements